

Sensor Data Management
with Probabilistic Models

Samenstelling van de promotiecommissie:

prof. dr. P.M.G. Apers promotor
prof. dr. L. Feng promotor
dr. M.M. Fokkinga assistent-promotor
prof. dr. ir. A.P. de Vries Centrum voor Wiskunde en Informatica
prof. dr. ir. B.R.H.M. Haverkort Universiteit Twente
prof. dr. ir. A. Nijholt Universiteit Twente
prof. dr. R.J. Wieringa voorzitter, secretaris

CTIT Ph.D. thesis series no. 09-50
ISSN: 1381-3617
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE Enschede, The Netherlands

SIKS Dissertation Series No. 2009-28
The research reported in this thesis has been carried out under
the auspices of SIKS, the Dutch Research School for Informa-
tion and Knowledge Systems.

Cover artwork: Sander Evers
Original photograph by Will Montague, licensed under the Creative Commons
BY-NC 2.0 license. See also: http://www.flickr.com/photos/willmontague

This thesis is typeset using LATEX. All diagrams are drawn using the TikZ package.

Printed by: Ipskamp Drukkers, Enschede, The Netherlands

© 2009 Sander Evers
ISBN: 978-90-365-2867-2

SENSOR DATA MANAGEMENT
WITH PROBABILISTIC MODELS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 25 september 2009 om 16.45 uur

door

Sander Evers

geboren op 1 april 1979
te Enschede

Dit proefschrift is goedgekeurd door:

prof. dr. P.M.G. Apers (promotor)
prof. dr. L. Feng (promotor)
dr. M.M. Fokkinga (assistent-promotor)

If you ask the investigator how he or she can be sure that the numbers will
eventually come right [. . .], your question will be rephrased and answered in

the following terms: “I am ninety-five per cent sure,” or “I am ninety-eight per
cent sure.” What does it mean to be ninety-five per cent sure? you may ask.
“It means I will be right in at least nineteen cases out of twenty; or, if not in
nineteen out of twenty, then in nineteen thousand out of twenty thousand,”

the investigator will reply. And which case is the present one, you may ask: the
nineteenth or the twentieth, the nineteen-thousandth or the twenty-thousandth?

J.M. Coetzee, Diary of a Bad Year

vi

Preface

As the chairman of my dissertation committee Roel Wieringa once mentioned in
a Ph.D. student career seminar I attended, every Ph.D. has learned something
about dealing with uncertainty. For me this is true on two levels, as it is also the
topic of this thesis.

Of course, I didn’t know that this would be the case when I started in the
Databases group on the NWO project Context Aware Data Management for Ambient
Intelligence. The citation at the start of this thesis represents the mindset I had
about the subject: in short, a mucky business. Not for nothing, computer science
has shielded itself from the uncertainties of the world by turning a 4.82256 V
voltage into a rigorous logical true.

Four and a half years later, I am convinced that uncertainty and rigor do
not preclude each other, and that indeed their combination can be very fruitful.
Hopefully, my work can contribute a little bit in communicating this conviction to
the data management community, for which the subject is reasonably unfamiliar.

When talking about the fruits of research, you sometimes stop and wonder
who will be eating them. Although I never truly came into ethical problems, the
localization setup in figure 1.1 did actually exist, and I had to put up signs with
the slogan ‘Bluetooth Brother is watching you’ on our floor. In my defense, I can
only say that sensor data research can better be performed in the public domain
than in a commercial, military or governmental one.

To get back to Roel Wieringa’s remark, ‘doing’ a Ph.D. not only produces
tangible results such as the one you are holding in your hands, but also some
intangible ones. About the most conspicuous of these, the status of doctor, my
feelings have also changed somewhat during the course. Perhaps, it is no more
an award for past achievements than a driver’s license is a prize for being a great
driver. . . and it rather means: go forth, and do research!

viii Preface

Acknowledgements

As many Ph.D. students have grudgingly remarked before me, the section you are
reading now is probably by far the most read in this thesis. This is because you
are looking for either a nice statement about yourself—a narcissism of which I am
guilty as well1—or some other personal statements from me, which are of course
much more interesting than the same technical presentations you have heard me
practice on you a thousand times before.

Before getting to this, I would like to thank some people I do not know
personally: the (mathematical) contributors to Wikipedia, who have changed
the dissemination of knowledge forever, and have helped me a lot in finding
useful mathematical tools. In a similar spirit, I am indebted to the free software
community for providing tools without which at least this thesis would have
looked very different. I mention two members in particular: Till Tantau for
TikZ, the wonderfully comprehensive package I could construct all the diagrams
I needed with, and my former roommate Stefan Klinger for giving me the final
nudge to try Linux.

I would also like to say thank you to the other guys I have shared room ZI3090
with: Nicolas and (especially) Harold. Spending most of your day in each other’s
presence, simply the way you get along makes all the difference, and I must say I
have absolutely nothing to complain about in this department. Secondly, learning
to do research includes seeing others do this, with roommates as the first source.
I hope I contracted some of their mentality of getting things done and keeping the
big picture in mind.

After my roommates, the ‘next of kin’ in the group are the other Ph.D. stu-
dents, for much the same reasons. Although the motivation was not always as
prominent, I am glad that we had weekly meetings of our own, first coordinated
by Ander and later by his worthy successor Riham; I hope this nice and useful
tradition will continue. One person also deserves some attention here, and not
only because he provided the espresso machine. I was glad to find in Robin
someone with a similar attitude towards research (and coffee).

Next in line are all the other people who made the Databases group such
a closely knit one. I will definitely remember spending lunch breaks on Go,

1read: if you have a chance to return the favor. . .

x Acknowledgements

competing in the Zeskamp, racing each other in karts, and the many sketches we
contrived and performed. And of course, none of these activities (nor the more
serious ones) would have run so smoothly without the organisation of Sandra,
Ida and Suse.

Another community in Enschede that I was happy to belong to is the close
harmony choir Musilon. They have probably given me a hobby for life, and I
hope I have given something back by being on the board for a year. Honorable
mention goes to Rob and Kris, who also accompanied me to Broodje Cultuur on
many Mondays during these four years.

Seeing others do research is one thing; seeing yourself do research is harder.
I have three supervisors to thank for helping me achieve a necessary balance
between self-doubt and self-confidence; as most people who know me will un-
derstand, this consisted mainly of instilling the latter. Peter, Maarten and Ling all
did this in their own way. (And if only it didn’t sound so much like an American
self-management course,2 these could have been labelled strategical confidence,
technical confidence and maybe even spiritual confidence.)

As we are nearing the end of this section, I want to make sure to include the
earlier ‘teachers’ that shared and nurtured my interest in the mathematical side of
computer science. Besides the already mentioned MMF, these include Rick van
Rein, Jan Kuper, Peter Achten and Rinus Plasmeijer.

As expected, this collection of praise reaches its culmination with the people
who have invested so much of their lives in mine that it is almost too obvious to
mention them: my parents Anton en Marjan, and my girlfriend Pauline.

—Sander

2hoera voor Twentse nuchterheid

Contents

Preface vii

Acknowledgements ix

1 Introduction 1
1.1 New requirements for data management 2
1.2 The case for probabilities . 5
1.3 Research questions . 7
1.4 Research approach and thesis structure 7
1.5 Related work . 8

2 Modeling sensor data using a Bayesian Network 11
2.1 Theoretical foundations of probability 12

2.1.1 Probability spaces and random variables 13
2.1.2 Implicit probability spaces . 14
2.1.3 Conditional probabilities . 15
2.1.4 Conditional independence . 16
2.1.5 Notational shorthands . 17

2.2 Defining a model using a Bayesian network 18
2.2.1 Formal definition . 18
2.2.2 Graphical properties . 21

2.3 Probabilistic models for sensor data 22
2.3.1 Naive Bayes classifiers for sensor data 23
2.3.2 Formal modularity of Bayesian networks 24
2.3.3 Dynamic Bayesian networks 24

2.4 Concrete models . 26
2.4.1 Hidden Markov Model . 26
2.4.2 Multi-sensor HMM . 27
2.4.3 Localization setup . 27

2.5 Common inference queries . 30
2.6 Evaluation and learning of sensor data processing 31

xii CONTENTS

3 Complex models 35
3.1 MSHMM-AO . 36
3.2 Deterministic functions in a Bayesian network 37
3.3 The Noisy-OR distribution . 40
3.4 MSHMM-NOR . 43
3.5 Complex queries as part of the Bayesian network 44

4 Local collection of transition frequencies 47
4.1 Illustration . 48
4.2 Traces, counts, frequencies and probabilities 50
4.3 Solving a flow with known vertex values 54

4.3.1 Problem definition . 54
4.3.2 Solution . 57
4.3.3 Inequalities . 61

4.4 Experiment . 62
4.4.1 Results . 63

4.5 Conclusions and future work . 63

5 Probabilistic inference in a relational representation 65
5.1 The inference expression for Bayesian networks 66
5.2 Relational expressions for inference 68

5.2.1 Relational algebra . 68
5.2.2 Operators for the inference expression 71
5.2.3 Operational semantics . 74

5.3 Rewriting the inference expression 76
5.4 Sum-factor diagrams . 79

5.4.1 Sum-factor diagrams for right-deep expressions 80
5.4.2 Extended sum-factor diagrams for bushy expressions 81

5.5 Conventional inference procedures 82
5.5.1 Variable elimination . 82
5.5.2 Junction tree propagation . 83
5.5.3 Junction tree propagation for multiple queries 84
5.5.4 Acyclic hypergraphs . 87

6 Relational inference for sensor models 93
6.1 Exploiting dynamic Bayesian network structure 94

6.1.1 Repeating structure in the inference expression 94
6.1.2 Sharing subexpressions . 96

6.2 Sparseness . 97
6.2.1 Sparse representation . 98
6.2.2 Exploitation of sparseness in MSHMM 98

6.3 Two techniques for Noisy-OR . 100
6.3.1 The problematic relation . 101
6.3.2 Sequential decomposition . 102

CONTENTS xiii

6.3.3 The Dı́ez-Galán Noisy-MAX decomposition 106
6.4 Analysis of MSHMM-NOR inference 109

7 Conclusions and future work 111
7.1 Main results . 111
7.2 Future directions . 113
7.3 Integration with streaming management 114

Bibliography 117

SIKS Dissertation Series 123

Summary 133

Samenvatting 135

xiv CONTENTS

Chapter 1

Introduction

The first decade of the new millennium has fostered a vision on information tech-
nology which has found its way into corporate, national and international research
agendas by the name of ubiquitous computing[60], pervasive computing[52], and
ambient intelligence[22]. In this vision, computing will be freed from the desktop
and move into people’s pockets, clothes, furniture and buildings. Moreover, the
hassle of controlling attention-demanding devices will give way to a focus on
the task at hand, supported by adaptive technology that defaults to appropriate
behavior in each situation (context awareness).

This transition is motivated by the availability of enabling technologies like
small batteries, flat displays, wireless communication infrastructure and cheap
sensors. It cannot be denied that it is really taking place; one has only to call
to mind the fast rise of car navigation systems, touch-pad PDAs, interactive
whiteboards, wearable mp3 players and the Nintendo Wii (a game computer
controlled by a motion sensing remote) in the last ten years.

However, the dream is far from realized. While the hardware is there, the
software infrastructure is still largely missing. It is still the case that ‘almost
nothing talks to anything else, as evidenced by the number of devices in a typical
house or office with differing opinions as to the time of day.’[29] If a shared clock
already proves difficult, how could we ever assemble constellations of devices
that share sensor information?

Historically, database management systems (DBMS) have come to play a key part
in the cooperation among a heterogeneous collection of (corporate) applications.
The DBMS functions as a stable hub, ensuring that all applications have the same
consistent view of the world, both on model/schema level and on data level. To
update or query this view, it provides a declarative language of basic operations,
and takes the responsibility that these are carried out in an efficient, reliable and
consistent way.

In a ubiquitous computing architecture, a similar role for data management can
be imagined; however, the requirements are quite different from the traditional

2 Introduction

office scenarios. This thesis focuses on one of the differences: the need to deal with
uncertainty that arises naturally from all sensor data and the integration thereof.
Although reasoning with uncertainty has proven very fruitful in the artificial
intelligence and machine learning communities, it has not been very popular in
the data management community because it tends to be at odds with scalability.

1.1 New requirements for data management

It is neither desirable nor possible to design a ubiquitous computing environment
as a monolithic whole. Hence, there is a need for a certain infrastructure to connect
the different parts to each other in a standardized way. Chen, Li and Kotz[14]
express this as follows:

Given the overwhelming complexity of a heterogeneous and volatile
ubicomp environment, it is not acceptable for individual applications
to maintain connections to sensors and to process the raw data from
scratch. On the other hand, it is not feasible to deploy a common
context service that could meet every application’s need either. In-
stead, we envision an infrastructure that allows applications to reuse
the context-fusion services already deployed, and to inject additional
aggregation functions for context customization and user personaliza-
tion where necessary.

Data management will be a part of this infrastructure. To get a theoretical grip on
the requirements for data management, we make the same division of processes
into sensors (data suppliers) and applications (data consumers). These two sides
have the following properties:

• Sensors may come and go: new sensors are installed, sensors permanently
break down or become obsolete and are removed.

• On a smaller timescale, the flow of data from a sensor may come and go:
batteries run out and are replaced, network connections are not always
operational.

• Sensors are heterogeneous: even sensors that provide the same information
use different data formats, data rates and accuracy specifications.

• Applications may come and go.

• The connectivity of an application may come and go; it may be turned
off by a user, lose its network connection, or temporarily move out of the
environment altogether.

• Applications have heterogeneous information needs: they can monitor some-
thing in the environment and receive continuous updates, they may define

1.1 New requirements for data management 3

certain events of interest and set a trigger on them, they may ask for a sum-
mary of what has happened during the time that they were disconnected.

Next, we can imagine a sensor data management system that mediates between the
data supply and demand sides. This system would have the following high-level
goals:

• Modularity/flexibility: to enforce a separation of concerns between sensors
and applications, applications should not subscribe to specific sensor data
but rather to variables in a more abstract model of the sensed world. Like
in the quote above, the system should allow definition of new views that
aggregate low-level into higher-level information.

• Efficiency/timeliness: due to the asymmetry between producers (low-level,
high-volume data) and consumers (lower-rate, high-level), the data man-
agement system in a ubiquitous computing environment will do a lot of
processing. In this respect, it resembles an OLAP (On-Line Analytic Pro-
cessing) system[13] rather than an OLTP (On-Line Transaction Processing)
system. It is the responsibility of the system to answer queries efficiently
and on time; this calls for preprocessing and caching.

• Reliability: Failing sensors should not break the system by keeping pro-
cesses waiting or not answering queries. Also, data overflow from the sen-
sor side and query overflow from the application side should be handled
gracefully.

We illustrate these requirements using a localization example that will function
as a running example throughout the thesis. Figure 1.1 shows the (partial) floor
plan of an office corridor, in which a group of Bluetooth transceivers (‘scanners’)
is used for localization. At several fixed positions (in the offices), a scanner is
installed which performs four scans per minute. Such a scan returns a list of
mobile devices that have been discovered within the reach of the scanner during
the scanning period (about 10 seconds).

For modularity reasons, applications should not be interested in these raw
scan results; what matters to them is the location of a mobile device. This location
is modeled here as a number that represents an office or part of the corridor.
Assuming that mobile devices are linked to people, applications could pose such
queries as:

• In which location is person P now?

• Has somebody been in locations 10–15 within the last hour?

• Have person P and person Q met yesterday?

Hence, to satisfy the modularity requirement, the data management system could
provide a view on the data with the schema (person,location,time); ideally, this view

4 Introduction

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

scanner 1

scanner 3

scanner 5

scanner 2

scanner 4

5
location number

reach of scanner 2

reach of scanner 3

wall

Figure 1.1: Floor plan for the Bluetooth localization example. The numbered squares are
the locations that applications are interested in. At five positions, a scanner is installed
that can detect a mobile Bluetooth device in a limited number of locations, as is shown for
scanners 2 and 3.

would obey rules like no person can be in two places at the same time (a consistency
constraint) and at each time, each person is in some location (a completeness constraint;
this may require the introduction of an extra location away for the area outside
of all sensor reach). There are several factors that complicate the formulation of
such a view in terms of the scan results:

• The range of a scanner does not coincide with a single location.

• A device is not always detected when it is in the range of a scanner.

• Scanners are not scanning all the time.

Given these problems, it is hard to imagine an SQL query that could build such
a view from the raw data (although such approaches exist, e.g. [35]); a further
complication is that this query would have to be adapted when the system detects
that a scanner is not working, or when additional scanners are introduced to the
system. Also, consider the case where cameras are added to the system for extra
accuracy; the query would have to fuse the information from scanner 3 that detects
person P in the gray area, and from the camera that detects a person exactly in
location 11, but cannot identify him or her as P.

In this thesis, we argue that data models should include uncertainty in order
to define views like this; we give some supporting arguments in the next section.
Above, we have highlighted the modularity requirement; as for the rest of the
requirements, it is not to hard to imagine that:

• in order to process localization queries that span a considerable amount of
time or space, the required data has to be summarized and indexed in some
way, in order to satisfy the efficiency requirement.

1.2 The case for probabilities 5

• the system should behave reliably, and deal with an overload of queries in a
graceful way (e.g. refuse queries, delay answers, or give answers with less
accuracy).

The scope of this thesis does not further include the reliability requirement; the
modularity and efficiency requirements can be found back in our research ques-
tions (section 1.3).

1.2 The case for probabilities

The vast majority of information systems only deals with certain data: to the
system, a fact is either true or not. However, it can be argued that most hu-
man knowledge is uncertain. The Lowell database research self-assessment [1]
acknowledges this:

When one leaves business data processing, essentially all data is un-
certain or imprecise. Scientific measurements have standard errors.
Location data for moving objects involves uncertainty in current po-
sition. Sequence, image, and text similarity are approximate metrics.
[. . .] Query processing must move from a deterministic model, where
there is an exact answer for every query, to a stochastic one, where
the query processor performs evidence accumulation to get a better
answer to a query.

This raises the question how business systems have managed to escaped this un-
certainty until now. Agre[3] provides an answer: ‘The main tradition of computer
system design, however, has a solution to this problem: restructure the activity
itself in such a way that the computer can capture the relevant aspects of it.’ For
example, the activity of borrowing a book from a library is structured into a pro-
cedure where the borrower has to deal with a clerk who registers the transaction.
Social practices, and even the architecture of a library with its check-out desk, are
as much part of this structured activity as the information system.

As we have mentioned, ambient intelligence has the goal of minimizing such
explicit interactions with the system. In the library system, the borrower should
not even have to present his/her ID card and borrowed books to a scanner; the
system should infer, for example using RFID tags, which action has taken place.
In the words of Agre, the design choice is to ‘reject the capture model, and
instead register aspects of the environment that can serve as rough, heuristic (and
therefore fallible) proxies for the institutional variables that are the real objects of
interest.’ Enter uncertainty.

Franklin[27] agrees that this is one of the ‘challenges of ubiquitous data man-
agement’:

Whether the system obtains its context information from sensors, user
input, PIM (personal information management) applications, or some

6 Introduction

combination of these, it must perform a good deal of processing over
the data in order to be able to accurately assess the state of the environ-
ment and the intentions of the user. Thus, context-aware applications
impose demanding requirements for inferencing and machine learn-
ing techniques. These processes will have to cope with incomplete
and conflicting data, and will have to do so extremely efficiently in
order to be able to interact with the user in a useful and unobtrusive
manner.

This also makes clear why the uncertainty has to be dealt with within the data
management system: the inference process has to take into account the input from
multiple sources. As we stated in the previous section, it is the job of the data
management system to maintain a separation of concerns between these sources.

We now focus on sensor data processing. Looking beyond the realm of tradi-
tional ‘information systems’, for example in the fields of artificial intelligence and
scientific data processing, we see that the dominating method for dealing with
the uncertainty in sensor data is probability theory, which provides a framework
that is well-understood, theoretically sound and practically proven useful.1 For
example, in probabilistic localization models, uncertainty from different sources
can ‘cancel out’ against each other, providing more accurate results[33]. Balazin-
ska et al.[8] predict that probabilistic techniques will spread out of these domains
into that of data management:

Statistical analysis and modeling are perhaps the most ubiquitous pro-
cessing tasks performed on sensor data. This has always been true of
scientific data management, where sensor data collection usually aims
to study, understand, and build models of real-world phenomena. In-
creasingly, however, the need to use statistical-modeling tools arises
in nonscientific application domains as well. Many of the most com-
mon sensor-data processing tasks can be viewed as applications of
statistical models. Examples include

• forming a stochastic description or representation of the data,

• identifying temporal or spatial trends and patterns in the data,

• online filtering and smoothing (for example, Kalman filters),

• predictive modeling and extrapolation,

• detecting failures and anomalies, and

• probabilistically modeling higher-level events from low-level sen-
sor readings.

1For theoretical arguments in favor of probability theory over other approaches dealing with
uncertainty, we refer to a section in the first chapter of Pearl’s seminal work[48] by the same title as
this one.

1.3 Research questions 7

However, to make this transition, the mathematical techniques and programmatic
tools would have to be ‘targeted at the declarative management and processing
of large-scale data sets’, which is not yet the case[59]. It is here that we position
the objective of our research.

1.3 Research questions

Broadly speaking, our research objective is to investigate the use of probabilistic
models in a tentative sensor data management system as described above. Our
first research question stems directly from the modularity goal (section 1.1) of
such a system. Following well-known computer science principles, sensor data
models should not be defined as monolithic wholes, but in a modular fashion: it
should be possible to design, alter or remove the part of the model concerning
one particular sensor with as little knowledge about (or impact on) the rest of the
model as possible. This leads to the question:

Q1 How can probabilistic models be defined in a modular way?

We interpret this as an investigation into useful structures of a model in terms
of probabilistic variables and relations between them. A similar question can
be posed about the parameters within a probabilistic relation. In particular, we
examine a transition model P(Xt |Xt−1). For a variable Xt with a large and hetero-
geneous (discrete) state space, i.e. the set of values dom(Xt) that it can take, we are
interested in composing the transition model out of small local transition models:

Q2 How can a transition model be constructed in a modular way?

The third question deals with probabilistic inference, i.e. the calculation of a prob-
ability distribution over a query variable, which makes up most of the work that
a sensor data management system will perform. With standard approaches to
inference, the processing time and space scale badly when the number of sensors
in a model is increased; the same holds for when the discrete state space of a
variable is enlarged. We ask ourselves:

Q3 How can probabilistic inference be performed efficiently in a situation where
the number of sensors and the domains of variables are scaled up?

1.4 Research approach and thesis structure

We investigate the research questions using the localization example from sec-
tion 1.1 as a test case; from this starting point, we try to generalize the results as
much as possible. We strive for theoretical frameworks that support the construc-
tion and execution of probabilistic models for sensor data.

8 Introduction

For the first research question, this means that we revisit the theory of (dy-
namic) Bayesian networks in the light of sensor data models and modularity. This
is done in chapter 2 and 3. Technically, the models presented in these chapters are
not very novel; the contributions of this thesis here mainly consist in summarizing
relevant material, pointing out why it is relevant, and making it accessible to a
scientific audience that has no background in probabilities.

The second question is answered in chapter 4. This part of the research consists
of rephrasing the question in a formal way, which turns out to take the form of
a system of linear equations; next, we make use of the special structure of this
system to obtain faster and more insightful solutions. For this solution method,
we venture a little into matrix and graph theory. The formulation of the problem
and its solution are novel to our knowledge.

The answers to the third research question are to be found in chapters 5 and 6,
and make up the main theoretical and technical contributions of this thesis. To
obtain optimizations of the inference in the localization example (chapter 6), we
first introduce a relational algebra framework to reason about the optimization of
inference queries in general (chapter 5).

1.5 Related work

The need to merge information from different sensors has arisen long before the
ubiquitous computing hype, namely in the military domain, where it is known
as data fusion[30]. A reason why this has not led to generic data management
techniques could be that these military systems (for example, the array of radars
and sonars on a battleship) have fairly static configurations. The sheer cost of
these sensors could also have played a role; Hellerstein, Wong and Madden[32]
analyze a similar question, namely why databases have not been used for satellite
data, as follows:

The answer lies with the “market” for remote sensing. NASA is one
of the only customers for remote sensing data management software.
They best understand their own needs, and their software budgets
are fairly large—software is cheaper than launching a set of satellites.
Hence the traditional DBMS focus on general-purpose applicability
and flexibility is not of primary importance to this community. Instead,
they seem to prefer to write or contract out custom code.

Regarding uncertainty in databases, a community effort of the past decade cen-
ters around probabilistic databases[10, 5, 16], which mostly take the approach of
modeling the existence of a tuple in a certain table as a stochastic variable, with
independence assumptions among the tuples within a table as well as among
tables. This approach is not applicable to sensor data, where these dependencies
do exist[38]—moreover, they are exploited to improve accuracy.

1.5 Related work 9

Perhaps the work that comes closest to ours is that of Kanagal and Deshpande[38];
they offer a system in which a dynamic Bayesian network is used to provide a view
that consists of probabilistic variables that are continuously updated by incoming
sensor data. Where they have taken an experimental systems approach, we take
a more theoretical one. Also very relevant are [59] and [53], which acknowledge
the optimization opportunities for sensor data that stem from the repetition of
conditional probability distributions throughout a probabilistic model or query.

10 Introduction

Chapter 2

Modeling sensor data using a
Bayesian Network

In sensor data, uncertainty arises due to many causes: measurement noise, missing
data because of sensor or network failure, the inherent ‘semantic gap’ between the
data that is measured and the information one is interested in, and the integration
of data from different sensors. Probabilistic models deal with these uncertainties
in the well-understood, comprehensive and modular framework of probability
theory, and are therefore often used in processing sensor data.

Apart from externally imposed factors, uncertainty can also stem from the
inability or unwillingness either to model all the world’s intricacies or to reason
with such a complicated model[51]. Choosing a simpler probabilistic model
provides a way to trade off accuracy for reasoning power.

A probabilistic model defines a set of variables and the relation between them.
This relation is probabilistic instead of deterministic: it does not answer the
question what is the value of C, given that A = a and B = b? but rather what is the
probability distribution over C, given that A = a and B = b? or what is the probability
distribution over C, given certain probability distributions over A and B?. In sensor
data processing, the values a and b are readings provided by sensors, and C is a
property of the sensed phenomenon.

There exist a lot of probabilistic sensor models which are specialized for a
certain task and sensor setup. These specialized models are accompanied by
specialized inference algorithms which derive the probability distribution over a
target variable given the observed sensor data. However, in the context of our
data management requirements, we focus on the Bayesian network, a generic model
in which probabilistic variables and their relations can be defined in a modular
and intuitive way. Bayesian networks are the most popular member of a family
called graphical models:

Graphical models are a marriage between probability theory and

12 Modeling sensor data using a Bayesian Network

graph theory. They provide a natural tool for dealing with two prob-
lems that occur throughout applied mathematics and engineering—
uncertainty and complexity—and in particular they are playing an
increasingly important role in the design and analysis of machine
learning algorithms. Fundamental to the idea of a graphical model
is the notion of modularity—a complex system is built by combining
simpler parts. Probability theory provides the glue whereby the parts
are combined, ensuring that the system as a whole is consistent, and
providing ways to interface models to data. The graph theoretic side of
graphical models provides both an intuitively appealing interface by
which humans can model highly-interacting sets of variables as well
as a data structure that lends itself naturally to the design of efficient
general-purpose algorithms.

Michael Jordan, Learning in graphical models [36]

It is perhaps more accurate to view graphical models not as a class of models
themselves, but rather as meta-models: a Bayesian network is the language in
which a probabilistic model can be defined. In this aspect, Bayesian networks
play about the same role for probabilistic data modeling as entity-relationship
diagrams do for relational data modeling.

The goal of this chapter is to provide a solid theoretical framework for the
application of Bayesian networks in sensor data processing, which is needed for
subsequent chapters. It assumes no knowledge of probabilistic modeling, and
starts with a review of the relevant concepts from probability theory (section 2.1),
followed by a review of the semantics of a Bayesian network (section 2.2). In
section 2.3, we discuss the general use of Bayesian networks for sensor data in
particular; in section 2.4, we present some concrete models. The chapter’s focus
is on modeling, but it concludes with a section on querying these models (2.5) and
one on evaluating and learning them (2.6). Our approach to the theory is perhaps
somewhat more formal than usual—we consider the ability to formally manipu-
late probabilistic models and queries as important for optimizing inference (see
chapters 5 and 6).

2.1 Theoretical foundations of probability

Probability is conventionally defined either as a degree of belief in the occurrence of
an event or as a long-run frequency of this occurrence. These interpretations have
been subject to much academic debate. However, regardless of what semantics
are given to the probabilities, a probabilistic model has a rigorous formal defi-
nition in terms of set theory, which we present here. In its most generic form,
this definition is quite intricate, as it accommodates continuous variables and
uncountable probability spaces. However, we restrict ourselves to discrete (even

2.1 Theoretical foundations of probability 13

finite) variables, and can use a simpler definition. A probabilistic model is defined
in terms of a probability space and random variables.

2.1.1 Probability spaces and random variables

A probability space is a pair (P,Ω) of a probability measure P and a sample space Ω.
This Ω is a countable set that represents the universe of discourse of our model.
An event is a subset of Ω, and a probability measure is a function from events to
R1

0 (the real numbers between 0 and 1, inclusive), satisfying the following criteria:

P(∅) = 0
P(Ω) = 1

P(a ∪ b) = P(a) + P(b) for all disjoint a, b ⊆ Ω

(P-S)

An example probability space is Ω = {ω1, ω2, ω3, ω4}, with P({ω1}) = 0.1, P({ω2}) =
0.2, P({ω3}) = 0.3 and P({ω4}) = 0.4. The probabilities for all other subsets of Ω
follow from (P-S), e.g. P({ω2, ω3}) = P({ω2}) + P({ω3}) = 0.5.

A random (or stochastic) variable is a function on the sample space. For example,
we could define the variables X and Y on the above defined sample space:

X(ωi) = i
Y(ωi) = i mod 2

These functions have range {1, 2, 3, 4} and {0, 1}, respectively; however, we refer
to this as the variable’s domain, and write dom(Y) = {0, 1}. Random variables are
used in predicates, for example X > 2. This predicate is used as a shorthand for
the event

{ ωi X(ωi) > 2 } ,

for example in P(X>2) = P({ω3, ω4}) = 0.7. Predicates can involve multiple
random variables: P(X=Y) = P({ω1}) = 0.1. The product XY of variable X and
variable Y is a variable whose values consist of tuples of X and Y values:

XY(ω) = (X(ω),Y(ω))

Note that, by this definition, the event XY = (x, y), i.e.
{
ω XY(ω)=(x, y)

}
, equals{

ω X(ω)=x ∧ Y(ω)=y
}
: the event X=x∧Y=y. In the remainder, we will abbreviate

this conjunction to X=x,Y=y.
The probability distribution of a random variable X is a function that maps

each value x in the variable’s domain to the probability P(X=x). The probability
distributions fX, fY and fXY on the above defined variables are:

fX(1) = 0.1 fXY(1, 0) = 0 fXY(1, 1) = 0.1
fX(2) = 0.2 fY(0) = 0.6 fXY(2, 0) = 0.2 fXY(2, 1) = 0
fX(3) = 0.3 fY(1) = 0.4 fXY(3, 0) = 0 fXY(3, 1) = 0.3
fX(4) = 0.4 fXY(4, 0) = 0.4 fXY(4, 1) = 0

14 Modeling sensor data using a Bayesian Network

Note that some probabilities of fXY are 0 because they correspond to empty events.
For example, P(XY=(1, 0)) = P({ ωi X(ωi)=1,Y(ωi)=0 }) = P(∅) = 0. Also, note
that the values of a probability distribution always add to 1. This holds because a
variable X partitions the sample space into the events X=1, X=2, et cetera. Because
of (P-S), the P values on these events add up to one.

2.1.2 Implicit probability spaces

The above examples are given only to clarify the theory; in the practice of prob-
abilistic modeling, the sample space is never explicitly defined. One starts by
postulating some random variables and their domains; the sample space is then
implicitly defined as all possible combinations of values for the variables. For
example, let us model a world where a red and a blue die are thrown. We repre-
sent the number that comes up on the red die with the random variable R, and
that on the blue die with B; dom(R) = dom(B) = {1, 2, 3, 4, 5, 6}. The implicitly
defined sample space is then Ω = dom(R) × dom(B) = {(1, 1), (1, 2), . . . , (6, 6)}, and
the random variables are the following functions on Ω:

R(x, y) = x
B(x, y) = y

The predicate R = 2 thus denotes the event{
(x, y) R(x, y)=2

}
= {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}

The probability measure is usually defined by means of a given joint probability
distribution over all variables, in this case fBR. We have intentionally reversed the
order of R and B here to highlight the difference between the sample space and
the domain of the joint probability distribution. There is also a correspondence:
each event BR = (b, r) is a distinct singleton set in Ω, and vice versa. The given
value fBR(b, r) tells us the value of P on this event; as we will show, this defines
the P function completely. For example, the event BR = (3, 2) is defined as

{ ω B(ω)=3,R(ω)=2 } = {(2, 3)}

If fBR(3, 2) = 0.03 is given, this tells us that P(BR=(3, 2)) = P({(2, 3)}) = 0.03. Thus,
P is defined on all singleton sets { {ω} ω ∈ Ω }, and the value of P on other subsets
can be derived using (P-S). The only criterion that the joint probability
distribution has to satisfy, in order not to violate the second axiom, is that the
individual probabilities add up to 1.

So, we have shown how an implicit probability space can be defined given a
set of variables and a joint probability over them. The structure of this probability
space is actually never needed in probability calculations. For example, the
probability P(R=2) can be directly expressed in terms of the joint probability. This

2.1 Theoretical foundations of probability 15

is done by expressing the event R = 2 in terms of the events of the form BR = (b, 2):

{ ω R(ω)=2 }
=

{ ω R(ω)=2 } ∩Ω

= B=b events partition Ω

{ ω R(ω)=2 } ∩
⋃

b ∈ dom(B)

{ ω B(ω)=b }

= ⋃
b ∈ dom(B)

{ ω R(ω)=2,B(ω)=b }

= ⋃
b ∈ dom(B)

{ ω BR(ω)=(b, 2) }

The fact that the B = b events partition Ω also causes the events BR=(b, 2) to be
disjoint, and therefore, using (P-S),

P(R=2) =
∑

b ∈ dom(B)

P(BR=(b, 2))

The same reasoning can be followed in an arbitrary probabilistic model, for any
predicate θ and any variable X:

P(θ) =
∑

x ∈ dom(X)

P(θ,X=x) (M)

Applying this rule repeatedly, the predicate on the rhs can be supplemented to
include all the variables in the joint distribution; the expression then becomes a
multi-dimensional summation over the variables that are not in θ.

Bottom line: it is perfectly possible to define and use a probabilistic model
without ever mentioning the probability space. One reason why we do mention
it is that it provides a formal means of comparing two probabilistic models with
each other. The two models implicitly define two probability spaces (P,Ω) and
(P′,Ω′); these models are said to be consistent with respect to a predicate θ if
P(θ) = P′(θ).

2.1.3 Conditional probabilities

The conditional probability P(b|a) (where a and b are events) is defined as follows:

P(b|a) =
P(b ∩ a)

P(a)
if P(a) , 0

16 Modeling sensor data using a Bayesian Network

It is undefined if P(a) = 0. However, in Bayesian networks conditional prob-
abilities are used the other way around; in the specification of the model, the
probabilities P(X=x) and P(Y=y|X=x) are given for all x and y, and together
determine:

P(XY=(x, y)) = P(X=x)P(Y=y|X=x)

Thus, one specifies a value P(Y=y|X=x) = v, even if P(X=x) = 0. The value just
does not matter, because P(XY=(x, y)) = 0 for any v.

Then, the reader may ask, why bother specifying this value at all? The answer
is modularity: the probability P(Y=y|X=x) is specified without full knowledge of
variable X. For example, let X model the location of a transmitting device, and
Y the strength of its received signal at a certain fixed receiver. The conditional
probability P(Y=y|X=x) models only the uncertainty in the sensing process, and
can be very well defined without needing to know anything about the probability
distribution over the location: if the transmitter would be 50m up in the air
(X = x), it would generate signal strength y with a probability P(Y=y|X=x) = v.
Afterward, this sensing model may be used in a situation where this location is
impossible (i.e. X is the location of a car), in which case P(X=x) = 0, and the value
v is irrelevant.

The conditional probability distribution (cpd) of Y given X is the function mapping
any combination of values y and x (from dom(Y) and dom(X), respectively) to
P(Y=y|X=x). For a cpd, it holds that

∑
y∈dom(Y) P(Y=y|X=x) = 1 for every x;

again, this follows from (P-S)p. 13, provided that P(X=x) > 0. For Bayesian
networks, it is true by definition, also when P(X=x) = 0; see section 2.2.

2.1.4 Conditional independence

Two variables A and B in a probabilistic model are called independent iff

∀a, b. P(AB=(a, b)) = P(A=a)P(B=b)

This implies that

∀a, b. P(A=a|B=b) = P(A=a)
∀a, b. P(B=b|A=a) = P(B=b)

or, in words, knowledge about one variable does not change the probability of the other.
Actually, no probability ever really changes, of course—the probability measure
P is as immutable as any other mathematical function. However, in colloquial
speech, the notion of probabilities that change (or beliefs that are updated) when
more evidence becomes available is often used.

Independence does not occur often in probabilistic models, because the very
reason that one puts two variables in one model is that knowledge of one affects

2.1 Theoretical foundations of probability 17

knowledge of the other. A notion that is used much more often is conditional
independence. The variables A and B are conditionally independent given C iff

∀a, b, c. P(AB=(a, b)|C=c) = P(A=a|C=c)P(B=b|C=c)

Again, this implies that

∀a, b, c. P(A=a|B=b,C=c) = P(A=a,C=c)
∀a, b, c. P(B=b|A=a,C=c) = P(B=b,C=c)

Here, a translation in natural language would be: given that C = c, knowledge of B
is irrelevant for the probabilities over A, and vice versa. Asserting these kind of inde-
pendencies is an important part of probabilistic modeling; it makes models easier
to specify or learn (because it reduces the number of parameters), and it makes
reasoning more efficient. In section 2.2.2, we discuss how the graphical structure
of a Bayesian network corresponds to assertions of conditional independence.

2.1.5 Notational shorthands

We introduce some notational shorthands, most of which are commonly used in
probabilistic modeling:

• We write P(x) instead of P(X=x); the implicit variable X is syntactically
derived from the abstract value x.

• If we have defined the random variables V1 through Vn, then P(v1..n) means
P(V1V2 · · ·Vn = (v1, v2, . . . , vn)).

• If we have not defined an order on the set of variables V̄, we write P(v̄); in
that case, any order can be taken (but the order in the product of variables
should be the same as the order in the tuple of values).

• Sometimes we index a variable by a set instead of by numbers. For example,
we define the variables XA,XB,XC, and S̄ = {A,B,C}; then P(xS̄) means
P(XAXBXC = (xA, xB, xC)) (again, any order on S̄ can be taken).

• Note: the above expansion of xS̄ is syntactic: the symbolic values xA, xB and
xC can be captured. For example,

∑
xA

P(xS̄) = P(xB, xC).

• In summations, we implicitly sum over the whole domain of a variable:∑
x P(. . .) means

∑
x∈dom(X) P(. . .). Again, the variable over which to sum (X)

is syntactically derived from the abstract value (x).

There is also a common notational shorthand that we explicitly do not use: P(X) for
the probability distribution over X. In our notation, probabilities P(. . .) are always
real numbers between 0 and 1, and never distributions (functions/arrays). Part of

18 Modeling sensor data using a Bayesian Network

the reason for this is that we introduce a notation p[X] to represent a distribution
in chapter 5, and we want to make a clear distinction between the two.

Informally, we do talk about “the distribution P(x)”, or “the conditional dis-
tribution P(y|x)”, as is common language in the AI literature. In this usage, there
are always abstract values x and y, and never concrete values (like 79 or true);
formally, the distributions that are meant are λx. P(x) and λy, x. P(y|x).

2.2 Defining a model using a Bayesian network

In the previous section, we explained that a probabilistic model is usually defined
by a set of random variables (including their domains), and a joint probability
distribution over these. In this section, we show how this joint probability can be
defined in a concise way by means of a Bayesian network.

Since their introduction by Pearl[48] in the 1980s, Bayesian networks—formerly
also known as belief networks or causal networks—have evolved into a de facto stan-
dard for probabilistic modeling. In spite of these names, Bayesian networks are
not restricted to representing beliefs or causal relations, nor do they imply a
commitment to the “Bayesian interpretation” of probability. A Bayesian network
defines a joint probability distribution in terms of (smaller) conditional probability
distributions, and it is up to the modeler to attach semantics to this distribution.

2.2.1 Formal definition

A Bayesian network over a set V̄ of random variables consists of:

1. A directed acyclic graph with V̄ as nodes.

2. For each variable V ∈ V̄, the conditional probability distribution (cpd) given
all its parents in the graph (i.e. all variables U for which an arrow U → V
exists).

This Bayesian network defines a probabilistic model—i.e. a joint probability over
all variables—in the following way: P(v̄) is defined to be the product of all cpds
on the values v̄.

We expand this into a more formal definition. In this section, we make a purely
technical distinction between the nodes V̄ in the graph and the random variables
in the probabilistic model: we denote the latter by X, indexed by V̄. There is thus
a one-to-one correspondence between V̄ and XV̄; if V̄ = {A,B}, then node A in the
graph corresponds to variable XA, and B corresponds to XB. A Bayesian network
then consists of:

1. A set V̄ and a domain function dom : V̄ → ℘Val (for some universal set of
values Val). The set V̄ is ordered {V1, . . . ,Vn}.

2.2 Defining a model using a Bayesian network 19

2. A directed acyclic graph (DAG) on V̄ that respects the order, i.e. for each
arrow Vi → V j in the graph, i < j holds. (This does not impose any
restrictions; for every DAG, there is at least one such order on the variables.)
This graph induces a function Parents, which maps every Vi ∈ V̄ to its list of
parents, ordered in the node order mentioned above. Thus, if V5 has parents
V3 and V2, then Parents(V5) = [V2,V3]. To address an element of this list, we
write Parents(V5)1 = V2 (we use a 1-based index).

3. For each V ∈ V̄, a function

cV : dom(V) × dom(Parents(V)1) . . . × dom(Parents(V)n)→ R1
0

with the following restriction: for each combination xParents(V), it should hold
that

∑
xV

cV(xV, xParents(V)) = 1.

The random variables of this Bayesian network are defined to be XV̄, with
dom(XV) = dom(V) for all V ∈ V̄. Over these variables, the following joint
probability is defined:

P(xV̄) =
∏
V∈V̄

cV(xV, xParents(V))

In the literature, this definition is usually formulated:

P(xV̄) =
∏
V∈V̄

P(xV |xParents(V)) (F-BN)

However, this definition is circular: the probability space is defined in terms of
the probability space. Therefore, we favor the first definition, as it is theoretically
clean; we will show below that (F-BN) follows from it as a theorem.

We will first show that the joint probability over any subset W̄ ⊆ V̄ which is
closed under Parents, i.e. for which W ∈ W̄ ⇒ Parents(W) ⊆ W̄ holds, is also a
product of the cV functions. We derive this probability by summing out all the
other variables Ū = V̄ \ W̄ from P(xV̄), and then moving the summations into the
expression. This is possible because of the distributive law ab+ac = a(b+c), which
takes the following form for

∑
-expressions:∑

x(φ ∗ ψ) =
(∑

x φ
)
∗ ψ if ψ does not contain free variable x (Σ-D-L)∑

x(φ ∗ ψ) = φ ∗
∑

x ψ if φ does not contain free variable x (Σ-D-R)

When we arrange the product of cU functions in V̄ order, every summation
∑

xU

can be moved until the corresponding cU factor using (Σ-D-R), because the
factors to the left of it can not contain variable xU. The Ū variables, ordered in
V̄ order, are denoted U1, . . . ,Um. In the product, the Ū factors can be arranged
after all W̄ factors: as W̄ is closed under Parents, the latter do not contain any

20 Modeling sensor data using a Bayesian Network

xU variables. After moving the summations, we can repeatedly eliminate the
rightmost summation, because

∑
xUi

cUi (xUi , . . .) = 1:

P(xW̄)
= by (M)p. 15∑

xŪ

P(xV̄)

= joint probability of a Bayesian network∑
xŪ

(∏
W∈W̄ cW(xW , xParents(W))

)∏
U∈Ū cU(xU, xParents(U))

= by (Σ-D-R); W̄ is closed under Parents(∏
W∈W̄ cW(xW , xParents(W))

)∑
xŪ

∏
U∈Ū cU(xU, xParents(U))

= by (Σ-D-R); the cU factors are arranged in V̄ order(∏
W∈W̄ cW(xW , xParents(W))

)∑
xU1

cU1 (xU1 , xParents(U1))
∑
xU2

cU2 (xU2 , xParents(U2)) · · ·
∑
xUm

cUm (xUm , xParents(Um))

= cUm adds up to 1(∏
W∈W̄ cW(xW , xParents(W))

)∑
xU1

cU1 (xU1 , xParents(U1))
∑
xU2

cU2 (xU2 , xParents(U2)) · · · 1

=

. . .

= cU2 adds up to 1(∏
W∈W̄ cW(xW , xParents(W))

)∑
xU1

cU1 (xU1 , xParents(U1)) · 1

= cU1 adds up to 1(∏
W∈W̄ cW(xW , xParents(W))

)
· 1

Thus, we conclude

P(xW̄) =
∏
W∈W̄

cW(xW , xParents(W)) if W̄ is closed under Parents

(J-S-BN)
Also, note that if we take W̄ = ∅ (so Ū = V̄), the above calculation (without the
first equality) yields

∑
xV̄

P(xV̄) = 1, and therefore the function P derived via the
construction in section 2.1.2 is a valid probability space.

Next, we derive the value of a cpd P(xV |xParents(V)) over a single variable V in a
Bayesian network. We cannot use the fraction of P(xV, xParents(V)) and P(xParents(V))
directly, because the sets {V} ∪ Parents(V) and Parents(V) are generally not closed

2.2 Defining a model using a Bayesian network 21

under Parents. However, we can use the transitive closure of these sets by extend-
ing them with the ancestors of V:

Anc(V) =
{

W there is a path from W to V ∧W , V ∧W < Parents(V)
}

Now, V∗ = {V}∪Parents(V)∪Anc(V) and V+ = Parents(V)∪Anc(V) are both closed
under Parents, so

P(xV, xParents(V), xAnc(V))
= apply (J-S-BN) to V∗∏

W∈V∗ cW(. . .)
=

cV(xV, xParents(V))
∏

W∈V+ cW(. . .)
= apply (J-S-BN) to V+

cV(xV, xParents(V))P(xParents(V), xAnc(V))

Summing over all xAnc(V) values on both sides of the above equation:∑
xAnc(V)

P(xV, xParents(V), xAnc(V)) = cV(xV, xParents(V))
∑

xAnc(V)

P(xParents(V), xAnc(V))

≡ by (M)p. 15

P(xV, xParents(V)) = cV(xV, xParents(V))P(xParents(V))
≡ divide both sides, assume nonzero

P(xV, xParents(V))
P(xParents(V))

= cV(xV, xParents(V))

≡ definition of conditional probability

P(xV |xParents(V)) = cV(xV, xParents(V))

Hence, the cpds (whenever they are formally defined) are the same as the cV
functions from our definition of a Bayesian network, and (F-BN) follows as a
theorem.

2.2.2 Graphical properties

In general, the factorization of the joint distribution of a Bayesian network leads
to a lot of conditional independencies. The independencies we mean here are
those purely derived from the form of the joint probability distribution, and not
from the actual values of the cpds. For example, in a graph A→ B→ C, applying
(J-S-BN) to {A,B,C} and {A,B} yields, respectively,

P(xA, xB, xC) = P(xA)P(xB |xA)P(xC |xB)
P(xA, xB) = P(xA)P(xB |xA)

22 Modeling sensor data using a Bayesian Network

and hence

P(xC |xA, xB)
= definition of conditional probability

P(xA, xB, xC)
P(xA, xB)

= just derived

P(xC |xB)

so XC is conditionally independent of XA given XB. As it turns out, these necessary
independencies can be described by a property of the graph called d-separation[48]:
a conditional independence of XA and XB given a set of variables XĒ follows from
the form of the factorization iff the nodes A and B are d-separated by the set of
nodes Ē. This d-separation is defined as follows: A and B are d-separated by Ē
if there is no d-connecting path between A and B given Ē. An undirected path
between A and B, with intermediate nodes N1,N2, . . . ,Nm is d-connecting given Ē
if for every Ni holds:

• if, from the two arrows connecting Ni to the rest of the path, at least one
points away from Ni, then Ni < Ē;

• if both arrows point towards Ni, then Ni or a descendant of Ni is in Ē.

In practice, it often suffices to know that:

• a node is conditionally independent from its non-descendants given its
parents, and

• a node is conditionally independent from the nodes outside of its Markov
blanket given the nodes in its Markov blanket. A node’s Markov blanket
consists of its parents, its children, and the parents of its children.

These conditional independencies are what makes a Bayesian network meaning-
ful as a probabilistic model even if only the graph is defined.

2.3 Probabilistic models for sensor data

In this section, we discuss two desirable properties of probabilistic models for
sensor data: the conditional independence of different sensor variables, and the
ability to represent changes. From now on, we drop the distinction between
the nodes in the graph and the probabilistic variables, because the readability
of probabilistic expressions suffers if all variables start with X. We will use
the distinction again in chapter 5, where we make a formal connection between
probabilistic variables and attributes in relation schemas.

2.3 Probabilistic models for sensor data 23

C

F1 F2 . . . Fn

(a) Generic naive Bayes classifier.

vehicle
type

inductance
pattern

video
image

(b) Naive Bayes classifier for road vehicles,
with two sensors: an induction loop
detector and a video camera.

Figure 2.1: A simple type of Bayesian network: the naive Bayes classifier.

2.3.1 Naive Bayes classifiers for sensor data

A particularly simple type of model is the so-called naive Bayes classifier. Its
Bayesian network consists of one unobservable ‘class variable’ C, several observ-
able ‘feature variables’ Fi, and arrows C → Fi from the target variable to every
feature variable. The term classifier refers to the inference task associated with
this model: given some observed features f̄ , determine the most likely class c, i.e.
arg maxc P(C=c|F̄= f̄).

The graph structure implies that, given a value of the class variable, all feature
variables are conditionally independent of each other. Even in cases when this
independence assumption is clearly invalid, the model often has surprisingly
good accuracy[21], and it is popular due to its inference speed and ease of learning
(see also sections 2.5 and 2.6 on inference and learning).

The model can be applied to a sensor environment where multiple sensors are
used to observe the same phenomenon (but possibly different properties of it).
The class variable corresponds to that phenomenon, and feature variable Fi to the
input from sensor i. For example, one may be interested in the type of vehicles
(car, truck, bus, motorcycle) passing at a certain point of a highway[37]. This is
sensed using two different sensors: an induction loop and a video camera. The
probabilistic model contains a sensor model P(fi |c) for both sensors, specifying the
probability for vehicle type c to cause sensor observation fi. (Additionally, the
model contains the so-called class prior P(c) specifying the relative frequency of
vehicle type c.)

The sensors models contain uncertainty: a bus may confuse the video camera,
and (perhaps under certain lighting conditions) produce an image i that is more
likely to result from a truck than from a bus (i.e. P(F2=i|C=truck) > P(F2=i|C=bus).
The conditional independence assumption now states that P(F1=p|C=bus,F2=i) =
P(F1=p|C=bus): the fact that a bus produces a confusing image i does not influence
the probability that it produces a confusing inductance pattern p. This seems a fair
assumption, because the source of uncertainty for the camera (different lighting
conditions) seems unrelated to the source of uncertainty for the induction loop

24 Modeling sensor data using a Bayesian Network

(say, different materials).
A major practical advantage of using the naive Bayes classifier for sensor data

is that adding, removing or changing a sensor (or the associated software) is
done without touching the models for the other sensors; the naive Bayes classifier
meets our modularity requirement (section 1.1). For example, the camera feature
extraction software is changed so the variable F2 gets a new meaning (let us model
this by a different variable F′2) and a new domain with different values. Then a
new model P(f ′2 |c) for the camera is needed, but the induction loop model P(f1 |c)
does not have to be altered. If it were dependent on F2 (the graph has an arrow
F2 → F1), the model P(f1 |c, f2) would have to be modified to P(f1 |c, f ′2) as well.

2.3.2 Formal modularity of Bayesian networks

We now formalize the following statement: Adding a sensor does not change the
probabilistic model over the existing variables. When we add a node to a Bayesian
network, and only add edges from the existing network to the new node, the
model over the existing variables does not change. First, note that adding an edge
the other way around, i.e. from the new node to an existing node, actually means
that the cpd on the existing node has to be changed; it gets an extra dimension,
because it now depends on one more variable. When we only add edges from
existing variables, this does not happen.

Say that the network consists of {V1, . . . ,Vn} and defines a joint probability

P(v1..n) = cV1 (. . .)cV2 (. . .) · · · cVn (. . .)

Then, a new node Vn+1 with cpd cVn+1 is added; the new model defines a joint
probability P′(v1..n+1). In this new model, the set {V1, . . . ,Vn} is still closed under
Parents (because none of them has Vn+1 as parent), so by (J-S-BN)p. 20,

P′(v1..n) = cV1 (. . .)cV2 (. . .) · · · cVn (. . .)

So, the old and new model are consistent with respect to the probability distribu-
tion over the old variables, and hence with all predicates over these variables. By
a similar argument, removal or modification of a variable Vi and its cpd has no
effect on the joint probability over the other variables, as long as Vi has no children.
(In the naive Bayes classifier, all sensor variables satisfy this requirement.)

2.3.3 Dynamic Bayesian networks

The naive Bayes classifier can be applied in a streaming setting on a snapshot
base; in that case, we do not define any temporal relations between the features
or class at time t and those at t + 1. However, such temporal relations are often
present; e.g. the location of an object at t + 1 is probabilistically dependent on its
location at t (and vice versa).

2.3 Probabilistic models for sensor data 25

Bayesian networks can model a variable X whose value changes over time by
defining an instance Xt of this variable for each time t in a discrete time domain
0..T. These kind of networks are referred to as dynamic Bayesian networks[17, 41,
47]. Usually, the term implies some further restrictions:

• for each t, the same variables exist; let us refer to them as {V1
t , . . . ,V

n
t }

• the parents of each V j
t are among the variables at t and t − 1, and are the

same for each t

• the cpd cV j
t

is the same for each t

The variables at t = 0 form an exception, as they cannot have any parents in t− 1.
Therefore, for t = 0 different variables and cpds are allowed. The rest of the model
consists of identical ‘slices’: it is said to be (time-)homogeneous.

Examples are given in the next section: the HMM and MSHMM models are
both dynamic Bayesian networks that satisfy the above restrictions. More models
are defined in chapter 3, where we widen our definition of a dynamic Bayesian
network somewhat.

In anticipation of chapter 6, we derive a property of the product of the cpds in
slice t, namely: ∏

j=1..n

cV j
t
(. . .) = P(v1..n

t | ı̄t−1) (C-S)

It equals the conditional probability of the variables V j
t given their parents in slice

t − 1. We call this set of parents the interface between t − 1 and t, which we write
Īt−1. Formally, we define, for each t:

Īt
def
= V̄t ∩

⋃
j Parents(V j

t+1)

In this definition, we follow Murphy[47], except that he calls this the forward
interface of slice t. Note that Īt−1 d-separates {V1

t , . . . ,V
n
t } from the other variables

in slices t − 1 and earlier. For the derivation of (C-S), we start with an
auxiliary calculation:

P(v1..n
0..t)

= by (J-S-BN)p. 20∏
j=1..n
k=0..t

cV j
t
(. . .)

= (∏
j=1..n

k=0..t−1
cV j

t
(. . .)

)∏
j=1..n cV j

t
(. . .)

= by (J-S-BN)

P(v1..n
0..t−1)

∏
j=1..n cV j

t
(. . .)

26 Modeling sensor data using a Bayesian Network

sensor

state

P(xt |xt−1) equal for all t
P(st |xt) equal for all tX0 X1

S1

X2

S2

X3

S3

X4

S4

Figure 2.2: Hidden Markov Model (HMM) with T = 4

The property is now derived as follows.∏
j=1..n cV j

t
(. . .)

= just derived

P(v1..n
0..t)

P(v1..n
0..t−1)

=
P(v1..n

t , v1..n
0..t−1)

P(v1..n
0..t−1)

= definition of conditional probability

P(v1..n
t |v

1..n
0..t−1)

= by d-separation

P(v1..n
t | ı̄t−1)

A similar, more general result for a group of variables in a Bayesian network is
derived in section 3.3.

2.4 Concrete models

2.4.1 Hidden Markov Model

One of the most simple dynamic Bayesian networks that can be applied to sensor
data is the Hidden Markov Model (HMM), shown in figure 2.2. For each discrete
point in time t ∈ {0, . . . ,T}, it contains a state variable Xt and a sensor variable St
representing an (imperfect/partial) observation of the state. The state variables
are linked together in a Markov chain, which means that Xt+1 is conditionally
independent of X0, . . . ,Xt−1 given Xt (as can be verified from the d-separation in
the graph). As for the sensor variables, St is conditionally independent of all other
variables given Xt.

The so-called state transition probabilities P(xt |xt−1) do not depend on t; to-
gether they make up the transition model of the HMM. Only X0 is different; the
probability distribution P(x0) is called the state prior. The observation probabilities
P(st |xt) make up the sensor model, which is also the same for each t.

Hidden Markov Models are popular in speech processing[49]. Simply put, the
S variables represent a sequence of observed audio frames, and the X variables

2.4 Concrete models 27

sensor 1

sensor 2

location
P(xt |xt−1) equal for all t
P(sc

t |xt) equal for all t
X0 X1

S1
1

S2
1

X2

S1
2

S2
2

X3

S1
3

S2
3

X4

S1
4

S2
4

Figure 2.3: Multi-sensor Hidden Markov Model (MSHMM) with T = 4, K = 2

represent the sequence of phones (the sounds that form the units of speech). The
task of the speech processing system consists of finding the most probable X
sequence.

2.4.2 Multi-sensor HMM

In order to accommodate multiple (say K) sensors in the HMM, one can treat them
as one sensor and join their observations s1

t , . . . , s
K
t into one value st = (s1

t , . . . , s
K
t).

However, this causes the size of dom(St) and hence the number of values in
the distribution P(st |xt) to grow (exponentially) large as more sensors are added,
which is a problem for specifying, learning and storing the model. Furthermore,
this model does not satisfy the modularity requirement in the way the naive Bayes
classifier does (see section 2.3.1).

As a solution to these problems, we introduce the Multi-sensor Hidden Markov
Model (MSHMM), which combines the HMM and the naive Bayes classifier.
Instead of one, it contains K sensor variables Sc

t (1 ≤ c ≤ K) per time point t, all
conditionally independent given Xt: see figure 2.3.

2.4.3 Localization setup

Using the MSHMM, we can model the localization scenario from section 1.1, which
we repeat and formalize here (in chapter 3, we will further refine the scenario to
allow for non-synchronized observations). At K fixed positions in a building, a
Bluetooth transceiver (‘scanner’) is installed, and performs regular scans in order
to track the location of a mobile device (note: we restrict ourselves to a single
device for simplicity), which can take the values 1–L. The scanning range is such
that the mobile device can be seen by 2 or 3 different scanners at most places.
After time T, we want to calculate P(xt |s1..K

1..T): the probability distribution over the
location at time t (with 1 ≤ t ≤ T) based on the received scan results during the
time span. As we will explain in section 2.5, this probabilistic computation forms
the base for different online and offline processing tasks like forward filtering
(using sensor data from the past to enhance the present probability distribution)
and smoothing (using sensor data from before and after the target time).

28 Modeling sensor data using a Bayesian Network

scanner 1

scanner 2

location

dom(Xt) = {1, . . . ,L}
dom(Sc

t) = {n, y}

P(xt |xt−1) equal for all t
P(sc

t |xt) equal for all t

X0 X1

S1
1

S2
1

X2

S1
2

S2
2

X3

S1
3

S2
3

X4

S1
4

S2
4

Figure 2.4: MSHMM for localization setup, with T = 4, K = 2

In the MSHMM, each sensor c corresponds to a scanner; the variable Sc
t repre-

sents the result of the scan at time t and can take the values n (device not detected)
and y (device detected). The state variable Xt for t ∈ {0, . . . ,T} represents the
location of the mobile device at time t and has the domain {1, . . . ,L}.

The transition model P(xt |xt−1) consists of the probabilities to go from one
location to another in one time step. Although the Bayesian network framework
does not forbid this model to contain L2 nonzero probabilities, it is in fact always
sparse in our localization setup, because it is only possible to move to a bounded
number of locations. For example, assume a partial floor plan of the localization
area looks like figure 2.5, where the numbered squares are 15 discrete values
(locations) that the X variable can take. For simplicity, we assume that in one time
step the mobile device can only move to an adjacent square, and only if there is
no wall in between. It is also possible that it stays in the same square. Then, as is
shown in figure 2.6, there are only two xt values for which P(Xt = xt |Xt−1 = 7) > 0,
and only five xt values for which P(Xt = xt |Xt−1 = 8) > 0. On average, there are 3
locations xt for which P(xt |xt−1) > 0.

The cpd P(sc
t |xt) is called the sensor model for sensor c and is also assumed to

be equal for each t. It is different for each c, because each sensor is fixed at a
different position and thus will get positive readings for different locations of the
mobile device. The sensor has a bounded reach: in figure 2.5, the reach of sensor
3 is shaded in gray. Hence, there is a bounded number of xt values for which
P(Sc

t = y|xt) > 0; for sensor 3, these 9 probabilities are shown in the gray squares.
However, P(Sc

t = n|xt) is positive for each xt. Therefore, the array representing
P(sc

t |xt) would have a density of (9 + L)/2L (see figure 2.7).

We could also look at the sparsity of the sensor models in another way: given
a fixed location xt, there is a bounded number of sensors that can detect the device,
i.e. a bounded number of c values with P(Sc

t = y|xt) > 0. This bound depends on
the sensor density and detection reach, and is 3 in our example. In section 6.2, we
discuss how this sparsity can be exploited for saving computational resources.

2.4 Concrete models 29

.2

.4 .4

.9 .4 .1

.4 .4

.2

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

scanner 1

scanner 3

scanner 5

scanner 2

scanner 4

scale
up

5
location number

reach of scanner 2

.4
reach of scanner 3
and P(S3

t = y|xt)

wall

Figure 2.5: Example (partial) floor plan for the localization model. The numbered squares
are the L = 15 discrete values that a location variable Xt can take. At K = 5 positions,
a scanner is installed. In one time step, it is possible to move to an adjacent location,
but not through a wall; this is encoded in the transition model P(xt |xt−1). For scanner 3,
the detection probabilities for the locations in its reach are also given; they determine the
sensor model P(s3

t |xt). Simultaneously scaling up L and K can be imagined as extending
this floorplan in the direction of the arrow. If the upper and lower edges of the floor plan
are ignored, each scanner has a reach of 9 locations, as is shown for scanners 2 and 3.

xt

P(xt |xt−1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xt−1
7 0 0 0 0 0 0 .95 .05 0 0 0 0 0 0 0
8 0 0 0 0 .2 0 .15 .3 .15 0 .2 0 0 0 0

Figure 2.6: Partial transition model corresponding to the floor plan in figure 2.5. Rows
sum to 1. This model encodes the fact that it is only possible to move to an adjacent room
(and not through walls).

xt

P(s3
t |xt) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s3
t

n .8 1 1 .6 .6 1 .1 .6 .9 .6 .6 1 .8 1 1
y .2 0 0 .4 .4 0 .9 .4 .1 .4 .4 0 .2 0 0

Figure 2.7: Sensor model for sensor 3 in figure 2.5. Columns sum to 1. This model encodes
the limited reach of each sensor.

30 Modeling sensor data using a Bayesian Network

2.5 Common inference queries

When a probabilistic model of a sensor setup has been established, it can be put
to work: using the data obtained from the sensors, it should be able to answer
queries with regard to variables in the model. Although these answers are always
probabilistic, they satisfy the requirements laid down in section 1.1. Firstly, they
are consistent: information from different sensors that would be conflicting in a
deterministic model can be suitably processed into the probability distribution.
Secondly, they are complete: no matter how little information is actually obtained
from the sensors, a probability distribution can always be produced. Queries in a
probabilistic model are formulated as conditional probabilities: given the observed
readings s̄ for sensor variables S̄, what is the conditional distribution P(Q=q|S̄=s̄)
over a certain variable Q?

For example, in the localization MSHMM with K = 10 and T = 100, one
could query X42 (the location at time 42), given the 1000 sensor readings s̄ ={

sc
t 1 ≤ c ≤ K, 1 ≤ t ≤ T

}
; this query corresponds to P(x42 |s̄). Note that, through

the transition model, this probability distribution is affected by sensor readings
not only with t = 42, but also by readings from earlier and later times: a detection
at t = 45 by a scanner near location 22 increases the odds that X42 = 22, because
the transition model dictates that the location cannot change very much within
three time steps (i.e. the probability of a large change is zero or very low).

How to calculate the answer to an inference query will be discussed extensively
in chapters 5 and 6. Here, we give an overview of some common queries for
dynamic Bayesian networks, or rather, common inference tasks consisting of sets
of queries. This overview is taken from [51] and applied to the MSHMM.

The first task is called smoothing. Like the query above, it considers all sensor
readings up to a certain point T; however, the goal is to find the probability
distribution over the location for every time t instead of for one specific point.
Hence, the set of queries is { P(xt |s̄) 1 ≤ t ≤ T }; note that the intended result is
a set of distributions, and formally it is clearer to write { λxt. P(xt |s̄) 1 ≤ t ≤ T }.
The results can, for example, be used to calculate the most likely location at each
point in time:

{
arg maxxt∈dom(Xt) P(xt |s̄) 1 ≤ t ≤ T

}
.

A different but related task is to find the probability distribution over the
whole sequence of locations, i.e. P(x1, . . . , xT |s̄). It is usually infeasible to store
this distribution in a multi-dimensional array, as the number of entries is expo-
nential in T. However, it often suffices to find just the most likely sequence, i.e.
arg max(x1,...,xT) P(x1, . . . , xT |s̄), which can be done without calculating the whole
array, using the well-known Viterbi algorithm[26]. Note: in general, this most
likely sequence of locations differs from the sequence of most likely locations
described above.

The above two tasks can only be performed after all sensor readings up to T
have been collected; until now we have silently assumed that T is the fixed length
of the model. However, this assumption does not make much sense in situations

2.6 Evaluation and learning of sensor data processing 31

where sensors are continuously collecting new data, and applications want to be
kept up to date as new data arrives. In these situations, T can be considered as
infinite or continuously growing. A common task is called filtering: continuously
calculating P(xt |s̄1, . . . , s̄t) for the current time t (where s̄u

def
= s1

u, . . . , sK
u).

As we explained, new sensor readings can improve the accuracy of earlier
location estimates; this means that, if the application can tolerate some latency, it
is better to wait some time after t before giving out an Xt estimate. If this delay
is fixed (say, δ), this is called fixed-lag smoothing: the continuous inference query
is then P(xt |s̄1, . . . , s̄t+δ). The opposite is also possible; P(xt |s̄1, . . . , s̄t−δ) would be a
fixed-lag prediction.

A reason for a system to group a set of queries into a specific inference task
instead of considering them all by themselves is that it is often possible to re-use
(intermediate) results of a query in order to calculate the answer to the following
queries. In fact, this is the only way that the continuous queries, whose answer
depends in principle on the whole history of sensor data, can be made tractable.
For example, the filtering query P(xt |s̄1, . . . , s̄t) can be calculated using only the
answer to the previous query P(xt−1 |s̄1, . . . , s̄t−1) and the new sensor readings s̄t.

Until now, we have not explicitly mentioned what to do with missing sensor
readings. The answer is almost trivial: the corresponding variables are simply
left out of the conditional probabilities. As we mentioned at the start of this
section, probabilistic models can always give an answer, no matter how few
sensor information is used. Of course, this makes the quality of the answer
deteriorate: the less input, the more the probability mass ‘spreads out’ over the
alternatives.

2.6 Evaluation and learning of sensor data processing

This thesis focuses on performing exact inference queries on a Bayesian network
with known parameters; i.e. the answer to a query corresponds exactly to the
conditional probability distribution that is asked for. Evaluation and optimization
of these systems is expressed in terms of efficiency: the amount of consumed
resources for a query (collection). In the current section, we briefly place this into
a broader context.

Firstly, approximate inference methods are widely used when exact inference
is unacceptably inefficient. Mostly, these methods are ‘probabilistic’ themselves:
to represent an intermediate probability distribution in the calculation, they use a
collection of (weighted) random samples instead of a large table with all the exact
probabilities. Sensor data processing systems that use approximate inference are
subject to an additional dimension of evaluation: next to efficiency, accuracy has
to be taken into account as well.

Accuracy, the extent to which the given answer to a query resembles the
‘true’ answer, can be defined in many ways; we will give some examples with the

32 Modeling sensor data using a Bayesian Network

localization query P(x42 |s̄). For now, we define the ‘true answer’ as the probability
distribution obtained by exact inference, and write P′(x42 |s̄) for the approximate
answer. Some possible accuracy measures are:

• The similarity between the two distributions P′(x42 |s̄) and P(x42 |s̄); a com-
mon measure for this is the Kullback-Leibler divergence[44].

• Whether the approximation yields the same most probable value:
arg maxx42 P′(x42 |s̄) = arg maxx42 P(x42 |s̄)

• The difference in probability of the most probable value.

• The similarity between the ranked lists of most probable values; a well-
known measure for this is Kendall’s tau[39].

It is also possible to look at system evaluation in a broader context, and evaluate
both the inference system and the probabilistic model at the same time. In this case,
we compare the given answer to the ground truth; in the localization example, this
would be the actual location at t = 42. Of course, this kind of evaluation presumes
that there is a well-defined ground truth for the query variable (this would be
harder for probabilistic variables such as ‘current terrorism threat level’), and that
it is known. Say that the ground truth is g; some possible evaluation metrics are:

• Whether the most probable answer equals the ground truth:
g = arg maxx42 P′(x42 |s̄)

• In case a distance measure d on the locations is defined, the expected error∑
x42

P′(x42 |s̄)d(g, x42).

Above methods evaluate the system for one dataset s̄ and one query X42; for
real evaluations to be useful, representative collections of datasets and queries are
needed, over which the above metrics can be averaged. In the case of binary query
variables (Is Sander currently in room 3090?), the evaluation metrics of precision and
recall can also be used, derived from the numbers of true/false positives/negatives
among the answers (for a set of queries with different evidence). A positive
answer is given when the probability for true exceeds a certain cutoff point.
Similar metrics are sensitivity/specificity and the ROC curve[25], which is obtained
by plotting sensitivity against specificity while varying the cutoff point.

If the parameters of a Bayesian network are not available, they can be learned
from training data. The goal is to maximize the accuracy of the system (compared
to ground truth); in general, machine learning principles dictate that this accuracy
is measured on a different data set to avoid overfitting the model to the training
data. However, this is not always done. A common practice is to search for the
maximum likelihood parameters: those that maximize the probability of the data.

For the MSHMM, finding the maximum likelihood parameters is especially
easy in the case that, next to sequences of sensor data, the ground truth (sequences
of locations) is also known; i.e. we have a set of instances of the model where all

2.6 Evaluation and learning of sensor data processing 33

the variables are observed. This means that for each variable of the model, a
conditional frequency table can be constructed (where the tables for all time-
instances of a variable are aggregated into one); the maximum likelihood cpd for
this variable then corresponds to that table.

Finding maximum likelihood parameters without ground truth is also possi-
ble, but much more time consuming and not always successful. The canonical
approach here is called expectation maximization[19] or simply EM. It is an itera-
tive process; from an arbitrary set of starting cpds, it uses inference to derive the
expected values for the unobserved variables, then alters the cpds for maximum
likelihood, and repeats these steps until convergence.

For more information about learning probabilistic models, we refer to machine
learning textbooks[11, 46].

34 Modeling sensor data using a Bayesian Network

Chapter 3

Complex models

There is one large disadvantage about the Multi-sensor Hidden Markov Model
(MSHMM) we introduced in section 2.4.2. Each point in time t defines, besides
state variable Xt, a variable Sc

t for each sensor, and therefore it synchronizes the
readings from the different sensors with each other (and with the state variable).
However, to satisfy the modularity goal in section 1.1, it would be useful to be
able to:

• integrate data from sensors that have different observation frequencies

• integrate data from sensors that have the same observation frequency but a
different phase (i.e. observations are not synchronized)

• incorporate state variables for which transitions can happen with a higher
frequency than the sensor’s observation frequency (apart from enabling
more accurate transition models, this is useful as an interface to other parts
of a probabilistic model that define a higher frequency)

In this chapter, we introduce probabilistic sensor models that fulfill these require-
ments. In section 3.1 we define a very general model, which we refine (in order
to keep inference tractable) in section 3.4. In order to do this, we introduce some
theory about deterministic functions (section 3.2) and how Bayesian networks
can be refined in general (section 3.3). Although this theory should not come as
a surprise to AI researchers, it is not often explicitly formulated, and we deem
it important for a working knowledge of Bayesian networks. The chapter con-
cludes with a discussion of how complex queries can be represented in a Bayesian
network (section 3.5), which also depends on these theoretical concepts.

36 Complex models

sensor 1

sensor 2

location X0 X1 X2 X3 X4 X5 X6

S1
3 S1

6

S2
2 S2

4 S2
6

(a) Simple integration model

X0 X1 X2 X3 X4 X5 X6

A1
3 A1

6

A2
2 A2

4 A2
6

(b) MSHMM-AO

Figure 3.1: Two models for the integration of data from sensors with different frequencies.
Sensor 1 reports an observation every 3 time steps, and sensor 2 reports every 2 time steps.

3.1 MSHMM-AO

For illustration purposes, we assume the localization scenario outlined in sec-
tion 2.4.3, only with two scanners that have a different frequency. Scanner 1
reports an observation every 3 time steps, while scanner 2 reports an observation
every 2 steps. In principle, an easy solution for the integration of the data from
these scanners would be to use the model in figure 3.1a, which is essentially the
MSHMM model with observation variables left out at the times when there is no
observation. (Note: as argued in section 2.3.2, the probability distribution over
the remaining variables would stay the same if the model would include these
left-out variables. Hence, inference over the model in figure 3.1a is equivalent to
inference over the MSHMM with no evidence on the left-out variables.)

However, this model does not really apply to the scenario with Bluetooth scans;
in the model, the observation S1

3 is only directly “caused” by X3, the location at
time 3. If S1

3 = y, the probability of locations around scanner 1 at t = 3 will
increase given this evidence; it will as well for t = 2, but only indirectly through
the transition model, and not to the same extent. This is because the model does
not capture the fact that the result of the scan S1

3 is caused by locations in the
interval {1, 2, 3}.

The most simple and general model that does accommodate observations of a
sequence of states is shown in figure 3.1b; we call it the MSHMM-AO, for aggregate
observations, and denote these observation variables with Ac

t . However, this model
has its own drawback. Note that the cpd P(a1

3 |x1, x2, x3) has four dimensions, and
in the localization scenario, where |dom(Ac

t)| = 2 and |dom(Xt)| = L, consists of
2L3 probabilities.

Hence, the size of the cpd grows exponentially w.r.t. the number of time points
in the interval. As the cost of learning and inference are directly related to this size
(see chapter 6), the MSHMM-AO model is only usable for very small intervals.
This problem can be solved by imposing a so-called Noisy-OR structure on the
cpd; in order to understand this structure, we first introduce some theory about
deterministic functions.

3.2 Deterministic functions in a Bayesian network 37

3.2 Deterministic functions in a Bayesian network

A nice property of Bayesian networks that we have not discussed yet is that,
alongside probabilistic relationships between variables, it can very easily accom-
modate conventional functions. For example, we can introduce a probabilistic
variable Y whose value y is always fully determined by the values of the variables
X1 and X2: y = f (x1, x2). Formally, in terms of the sample space (see section 2.1.1),
this variable is defined:

Y(ω) def
= f (X1(ω),X2(ω))

This definition leads to a cpd P(Y=y|X1=x1,X2=x2) which is a so-called degenerate
distribution: its value can only be 1 or 0. In particular, it is 1 when y = f (x1, x2)
and 0 otherwise. This necessarily follows from the definition of Y:

P(Y=y|X1=x1,X2=x2)
= definition of conditional probability

P(Y=y,X1=x1,X2=x2)
P(X1=x1,X2=x2)

= definition of P(A=a)
P(

{
ω Y(ω)=y,X1(ω)=x1,X2(ω)=x2

}
)

P({ ω X1(ω)=x1,X2(ω)=x2 })
= exhaustive case enumeration; see below

P({ ω X1(ω)=x1,X2(ω)=x2 })
P({ ω X1(ω)=x1,X2(ω)=x2 })

if y = f (x1, x2)

P(
{
ω false

}
)

P({ ω X1(ω)=x1,X2(ω)=x2 })
if y , f (x1, x2)

= (second case) by axiom P(∅) = 0 from (P-S)1 if y = f (x1, x2)
0 if y , f (x1, x2)

In the first case of the enumeration, the proposition Y(ω)=y follows from X1(ω)=x1,
X2(ω)=x2, the definition of Y and y= f (x1, x2); hence, it can be left out of the
set comprehension { ω . . . } above the fraction bar. In the second case, due to
y, f (x1, x2) and the definition of Y, the three propositions in the set comprehension
can never be satisfied and are equivalent to false.

To write down this cpd succinctly, we can use the Iverson bracket[42] which
is defined as follows (we use angled brackets instead of square ones to avoid
confusion with our other notation):

〈true〉 def
= 1

〈false〉 def
= 0

38 Complex models

The above cpd is then given by

P(Y=y|X1=x1,X2=x2) = 〈y = f (x1, x2)〉

Moreover, by the same reasoning as above, it also holds that

P(Y=y|X1=x1,X2=x2,V=v) = 〈y = f (x1, x2)〉

for any variable V and value v; in other words, Y is conditionally independent of
V given X1 and X2. Again, the caveat that P(. . . |θ) is undefined if P(θ)=0 applies.

In the above, we assumed an explicit definition of Y in terms of the sample
space; we will now show that the same effect can be obtained when Y is a variable
in a Bayesian network with parents X1 and X2 and the cpd defined above:

cY(y, x1, x2) def
= 〈y = f (x1, x2)〉

We assume that the network, besides these three variables, consists of other vari-
ables W̄; we will use the shorthand notation for probabilistic events again, e.g.
P(w̄) for P(W̄=w̄).

If we use the implicit definition of the probability space from section 2.1.2,
the sample space consists of all tuples of the form ω = (y, x1, x2, w̄); also those
for which y , f (x1, x2). In this respect, the situation is a little bit different than
before, because for these tuples Y(ω) , f (X1(ω),X2(ω)); however, this does not
make any difference in practice because P({ω}) = 0. We can see this from the joint
probability over all variables:

P(y, x1, x2, w̄)
= by (J-S-BN)p. 20

cY(x1, x2)cX1 (. . .)cX2 (. . .)
∏

W∈W̄ cW(. . .)
= definition of cY

〈y = f (x1, x2)〉cX1 (. . .)cX2 (. . .)
∏

W∈W̄ cW(. . .)

For the tuples in question, the first factor yields 0. As the probability space is only
‘accessed’ through events defined in terms of the variables, and never directly
through the members of the sample space, one is never exposed to the fact that
this zero-probability-event actually consists of {ω} and is not ∅ like above.

It is interesting to consider the joint distribution over all variables except Y:

P(x1, x2, w̄)
= by (M)p. 15∑

y P(y, x1, x2, w̄)
= see joint probability distribution derived above∑

y〈y = f (x1, x2)〉cX1 (. . .)cX2 (. . .)
∏

W∈W̄ cW(. . .)
= there is only one nonzero term: the one for which y = f (x1, x2)

cX1 (. . .)cX2 (. . .)
∏

W∈W̄ cW(. . .)[f (x1, x2)/y]

3.2 Deterministic functions in a Bayesian network 39

Y

X1

X2

f

Figure 3.2: Part of a Bayesian network with deterministic variable Y. Its value is functionally
determined (through f) by the values of X1 and X2.

Note the substitution of f (x1, x2) for y in the cW factors (the cXi factors cannot
contain y—that would mean that Y is a parent of Xi, a cycle in the graph).

We use this to derive:

P(y, x1, x2, w̄)
= as above

〈y = f (x1, x2)〉cX1 (. . .)cX2 (. . .)
∏

W∈W̄ cW(. . .)
= exhaustive case enumerationcX1 (. . .)cX2 (. . .)

∏
W∈W̄ cW(. . .)[f (x1, x2)/y] if y = f (x1, x2)

0 if y , f (x1, x2)

= joint distribution over all variables except Y (derived above)P(x1, x2, w̄) if y = f (x1, x2)
0 if y , f (x1, x2)

=

〈y = f (x1, x2)〉P(x1, x2, w̄)

Dividing both ends of this equation by P(x1, x2, w̄), we obtain:

P(y|x1, x2, w̄) = 〈y = f (x1, x2)〉

So, again, Y is conditionally independent of the W̄ variables given X1 and X2.
In a Bayesian network, variables like Y are called deterministic nodes[54] or

deterministic variables (although it is actually the relation between the variable and
its parents that is non-probabilistic). A convention is to draw them with a double
border, as in figure 3.2; we also add the name of the function.

Like we have shown above, deterministic variables lead to additional condi-
tional independencies between the variables in a model; the graphical d-separation
criterion can be extended to take this into account[28]. Deterministic variables also
enable more efficient inference[58]; we show some methods for this in chapter 6.

40 Complex models

X1 X2 · · · Xn

X′1 X′2 · · · X′n

Y n-way OR

Figure 3.3: Noisy-OR relation as a Bayesian network, where Y is the ‘output variable’ and
X1 through Xn are the input variables.

3.3 The Noisy-OR distribution

To resolve the scalability difficulties of the MSHMM-AO model, while still being
able to relate an observation Ac

t to an interval of state variables Xt−n, . . . ,Xt, we can
impose a certain structure on the cpd P(ac

t |xt−n, . . . , xt) so it can be defined using
a number of parameters that is linear (or constant; see the next section) w.r.t. the
interval length. As we show in chapter 6, this makes inference tractable.

The particular structure we propose is a slight generalization of the Noisy-
OR[48]. It defines a probabilistic relation between a binary ‘output’ variable Y
(whose place is taken by Ac

t in our model) and n ‘input’ variables X1, . . . ,Xn. The
cpd is defined as follows:

P(Y=false|x1, . . . , xn) =
∏

1≤i≤n

qi(xi)

P(Y=true|x1, . . . , xn) = 1 −
∏

1≤i≤n

qi(xi) (N-OR)

The reason for the name Noisy-OR is as follows. In the original formulation,
the Xi variables are also defined to be binary, and qi(false) = 1. So if all inputs
are false, the output is certainly false as well, just like a conventional OR-gate.
However, when an input Xi is true, this does not mean automatically that the
output is also true; it has a probability of qi(true) of being ‘inhibited’ by some
external factor (like a noisy channel). This happens independently for each input;
therefore, the probability of a false output given some true inputs is the product of
the probabilities of these inputs being inhibited.

The same probabilistic relation can also be defined using a Bayesian net-
work that contains a deterministic OR function, as shown in figure 3.3. The
cpd P(y|x1, . . . , xn) defined by this model is the same as (N-OR) if we define
qi(xi) = cX′i (false, xi). An advantage of the Bayesian network definition is that it
‘opens up’ the cpd for standard inference optimization techniques; also, it graph-
ically displays the probabilistic independence structure.

A question that naturally arises, then, is: can a variable with a Noisy-OR cpd

3.3 The Noisy-OR distribution 41

in an arbitrary Bayesian network be replaced by the sub-network in figure 3.3?
We will show that the answer is affirmative. However, we first observe that:

1. Besides the Noisy-OR relation, the Bayesian network in figure 3.3 formally
also contains the probability distributions P(X1), . . . ,P(Xn). This informa-
tion is not to be copied into the larger network.

2. In the larger network, the Xi variables may have additional parents and
children (also among each other), and the Y variable may have children.

3. If the sub-network is copied into the larger network, the joint probability
distribution is extended with the auxiliary variables X′i .

Therefore, we rephrase the question as follows: In a network containing fig-
ure 3.3 as a sub-network—where the Xi variables can have additional children
and parents, the Y variable can have children, but the X′i variables cannot have
any additional children or parents—is the joint probability over all the variables
except X′1, . . . ,X

′
n the same as when we remove these variables, connect Y to

X1, . . . ,Xn and replace its cpd by P(y|x1, . . . , xn)?
We answer this question by considering a more general situation—a Bayesian

network with an arbitrary subset of variables X̄ whose children are in X̄ ∪ {Y}. In
the Noisy-OR situation above, X̄ consists of the X′i variables. For reasons that will
shortly become clear, we divide the rest of the variables into:

• W̄, the parents of the variables in X̄ that are not in X̄ themselves

• V̄, the ancestors of the variables in W̄ that are not in W̄ themselves

• Z̄, all other variables

The situation is depicted in figure 3.4. The following holds:∑
x̄ P(v̄, w̄, x̄, y, z̄)

= by (J-S-BN)p. 20∑
x̄ (

∏
cV(. . .)) (

∏
cW(. . .)) (

∏
cX(. . .)) cY(. . .) (

∏
cZ(. . .))

= by (Σ-D-R) and (Σ-D-L); x̄ variables only occur in cX and cY factors

(
∏

cV(. . .)) (
∏

cW(. . .)) (
∑

x̄ (
∏

cX(. . .)) cY(. . .)) (
∏

cZ(. . .))
= by definition of c′Y (below)

(
∏

cV(. . .)) (
∏

cW(. . .)) c′Y(. . .) (
∏

cZ(. . .))

Note: to avoid clutter, we removed the subscripts in the products;
∏

cV(. . .) should
be read as

∏
V∈V̄ cV(. . .). For the last step, we define c′Y as:

c′Y(y, . . .) def
= (

∑
x̄ (

∏
cX(. . .)) cY(. . .))

where the variables on the c′Y(y, . . .) dots correspond to W̄. Hence, the joint
distribution over the non-X̄ variables is of a Bayesian network form—assumed

42 Complex models

YX̄

W1

W2

W3

V̄

Z̄

(a) Bayesian network with a sub-network X̄.

Y

W1

W2

W3

V̄

Z̄

(b) Equivalent Bayesian network without X̄.

Figure 3.4: A sub-network X̄ whose children are in X̄ ∪ {Y} can be eliminated without
changing the probability distribution over the other variables. The network is divided
into disjoint sets V̄, W̄, X̄, {Y} and Z̄ (see running text). Arrows within the ellipses can be
arbitrary (without cycles); other arrows can only go in the indicated directions.

that c′Y is of valid cpd form, i.e.
∑

y c′Y(y, . . .) = 1. And so it is; as expected, it
equals:

P(y|w̄)
= definition of conditional probability

P(w̄, y)
P(w̄)

= by (M)p. 15∑
v̄
∑

x̄ P(v̄, w̄, x̄, y)∑
v̄ P(v̄, w̄)

= by (J-S-BN)p. 20∑
v̄
∑

x̄ (
∏

cV(. . .)) (
∏

cW(. . .)) (
∏

cX(. . .)) cY(. . .)∑
v̄ (

∏
cV(. . .))

∏
cW(. . .)

= by (Σ-D-R) and (Σ-D-L)p. 19

(
∑

v̄ (
∏

cV(. . .))
∏

cW(. . .))
∑

x̄ (
∏

cX(. . .)) cY(. . .)∑
v̄ (

∏
cV(. . .))

∏
cW(. . .)

= ∑
x̄ (

∏
cX(. . .)) cY(. . .)

= by definition of c′Y
c′Y(. . .)

Therefore, the Bayesian network with the X̄ sub-network and the cY cpd is equiv-
alent to the Bayesian network without the X̄ variables and the c′Y cpd. In the

3.4 MSHMM-NOR 43

dom(Ac
t) = {n, y}

dom(Sc
t) = {n, y}

dom(Xt) = {1, . . . ,L}
P(sc

t |xt) equal for all t
P(xt |xt−1) equal for all t

X0 X1 X2 X3 X4 X5 X6 X7 X8

S1
2 S1

3 S1
4 S1

6 S1
7 S1

8

S2
1 S2

2 S2
3 S2

5 S2
6 S2

7

A1
4

OR
A1

8
OR

A2
3

OR
A2

7

OR

P

Figure 3.5: MSHMM-NOR with T = 8, P = 4, K = 2, D = 3, θ1 = 4, θ2 = 3. The MSHMM-
NOR is periodic with a period of P; all scans have a duration of D but may start at different
points in time for each scanner c. The end point for scanner c within the first period of the
model is denoted θc. Thus, Sc

t only exists if θc
− t (mod P) < D, and Ac

t only exists if θc
− t

(mod P) = 0.

next section, we replace the Ac
t cpds from the MSHMM-AO model with Noisy-OR

sub-networks.

3.4 MSHMM-NOR

In this section, we define the MSHMM-NOR (Multi-sensor HMM with Noisy-
OR), a model tailored for the Bluetooth localization scenario (section 2.4.3). Like
the MSHMM-AO, it can model unsynchronized interval observations for multiple
sensors; however, we now require that the observation frequency for each sensor
is the same. We do this because it simplifies optimization (see section 6.4), but
it is easy to drop this requirement if needed. Also, we allow for gaps between
observation intervals. Within an interval, the probability distribution is Noisy-OR
where each discrete time point has the same probability of causing an observation.

This leads to the Bayesian network shown in figure 3.5. Its parameters are:

• The total number of time slices T.

• A transition model P(xt |xt−1) and state prior P(x0), like in the models above;
each Xt variable ranges over L locations, and the transition model is equal
for each t.

• The number of sensors K.

• For each sensor c (1 ≤ c ≤ K), a sensor model P(sc
t |xt), which is equal for

each t. The Sc
t variables are binary and take the values {n, y} (which play the

role of false and true in the OR function, respectively).

44 Complex models

• The period P after which the model repeats itself.

• The duration D of an interval, i.e. the number of time points it includes.

• For each sensor c, the phase θc: the last time point of its first interval.

Besides the inference scalability, advantages of the Noisy-OR distribution in the
model (with equal P(sc

t |x
c
t) for each t) are that it is easy to learn with controlled

ground truth Xt data, and that it is easy to transform its time granularity. For
example, consider how we can learn the parameter P(Sc

t=y|Xt=x) in the location
model, for a certain location x. This is done by keeping the mobile device at
the fixed location x for some time, and recording the fraction of detections pcx by
sensor c. This fraction is used as the estimate of P(Ac

t=y|Xt−D+1= . . .=Xt=x). From
there, we proceed as follows:

P(Ac
t=y|Xt−D+1= . . .=Xt=x) = pcx

≡ by (N-OR)p. 40

1 −
∏

t−D+1≤i≤t P(Sc
i =n|Xi=x) = pcx

≡ P(Sc
i =n|Xi=x) is equal for all i

P(Sc
t=n|Xt=x) = D

√
1 − pcx

≡

P(Sc
t=y|Xt=x) = 1 − D

√
1 − pcx

Might we want to change the model’s time granularity later on, no new learning
is needed; the estimate pcx still holds, and in the above formula, the value for D is
simply changed.

A final remark about the MSHMM-NOR model is that it is not a dynamic
Bayesian network in the formal sense of section 2.3.3; the Ac

t variables have parents
in D time slices, and furthermore, not all time slices are identical. The first concern
can be remedied by a sequential decomposition of the D-way OR variable into D
binary OR variables that only have parents in the previous and current time
slices; this is explained in section 6.3.2. The second concern is inherent to sensor
data models with different frequencies.

3.5 Complex queries as part of the Bayesian network

The inference queries considered in section 2.5 have been of a simple form: given
the evidence collected by the sensors, what is the probability distribution over a variable or
set of variables in the model? We can expand the query possibilities by considering
functions over probabilistic variables, such as:

• Has the location remained the same within the interval {1, 2, 3}?
f (X1,X2,X3) = (X1 = X2) ∧ (X2 = X3)

3.5 Complex queries as part of the Bayesian network 45

• Have person P and Q (whose locations are modeled by Xt and X′t , respec-
tively) met within interval {1, 2, 3}?
f (X1,X2,X3,X′1,X

′

2,X
′

3) = (X1 = X′1) ∨ (X2 = X′2) ∨ (X3 = X′3)

• Has P or Q been in any of the locations 10–15 within the interval {1, 2, 3}?
f (X1,X2,X3,X′1,X

′

2,X
′

3) =
∨

1≤t≤3 Xt ∈ {10, . . . , 15} ∨ X′t ∈ {10, . . . , 15}?

These queries can be easily written as inference queries by introducing a deter-
ministic query variable Q into the network with 〈 f (. . .)〉 as its cpd, as explained in
section 3.2. The answer to the query then consists of the probability distribution
P(q| . . .) over this query variable. Thus, complex queries are reduced to simple
queries by adding a variable to the model (see also [48]). Therefore, in the next
chapters, we only consider simple inference queries.

46 Complex models

Chapter 4

Local collection of transition
frequencies

In the previous chapters, we have investigated how Bayesian networks provide
modularity with regard to different (groups of) variables within a probabilistic
model. In this chapter, we look at a different kind of modularity, namely within a
(sparse) transition model P(xt |xt−1). This is motivated by the way the localization
model scales up: not only the number of sensors, but also the number of locations
grows (see figure 2.5). As we pointed out in section 2.6, the cpd P(xt |xt−1) can
be constructed from frequencies; in this case, transition frequencies. We investigate
whether this can be done in a local fashion.

Specifically, the locality assumption is that different clusters of states are ob-
served by different sensors; for localization scenarios, this is very natural. Note:
contrary to the scenario used before, in this chapter we assume these states are
directly observed (i.e. with certainty) so that accurate statistics can be obtained.
On these clusters, we investigate how to apply the ‘divide-and-conquer’ princi-
ple: collecting local statistics for each cluster and aggregating these into global
statistics. Advantages of this approach could consist of reducing inter-cluster
communication, allowing for identity changes of observed objects, and enabling
non-synchronized statistics collection—we detail these examples below.

An example state space is shown in figure 4.1. We assume it is discrete, and
partitioned into clusters C1, C2 and C3. Possible transitions are shown using
arrows; the goal is to collect a transition count for each arrow. If we collect these
counts for one cluster, we correctly distinguish all transitions within the cluster,
but we cannot correctly distinguish all transitions entering or leaving the cluster;
two transitions from different external states to the same internal state are counted
as the same transition, and the same goes for transitions to different external states.
The reason for this is that from the perspective of this cluster, there is only one
large external state, namely ‘out of local sensor reach’. Thus, when collecting only

48 Local collection of transition frequencies

•

•

•

•
•

•
•

•

•
•

C1

C2C3

Figure 4.1: A discrete state space,
partitioned into three clusters. Ar-
rows represent the possible transi-
tions between states.

a b
c d

e

C1

C2

Figure 4.2: A 2D area as a discrete state space for
a moving object’s location. The states (a, b, . . .)
are called granules. Again, the state space is par-
titioned into clusters (C1, C2, . . .). Transitions (not
shown) are possible between adjacent granules.
Self-transitions are also possible.

per-cluster statistics, we lose some information. Our research question is then: to
what extent can we recover this information when combining local statistics into
global statistics?

The rest of the chapter is structured as follows. In section 4.1, we give a more
concrete illustration and motivation of the problem. Next, we formalize the prob-
lem statement in terms of transition counts and frequencies (section 4.2). We also
briefly describe the application of our approach to the transition probabilities in a
Markov model. In section 4.3, we solve the linear equations using an alternative
representation of the inter-cluster transition graph. Section 4.4 describes the ex-
periment and its results, and section 4.5 presents conclusions, related work and
possible extensions.

4.1 Illustration

To illustrate the situation in a somewhat more concrete way, we will hereafter
consider the state space to be the location of a moving object in a two-dimensional
area. This area is split up into discrete granules, with clusters formed by adjacent
granules; an example is shown in figure 4.2. Each granule is observed by one
sensor that detects whether the object is present or not, e.g. a camera, infra-
red sensor or fixed Bluetooth transceiver (detecting mobile Bluetooth devices).
Sensors are battery-powered and communicate wirelessly with their neighbors,
forming a multi-hop network. At the center of each cluster, a hub collects the
transition statistics every once in a while. Using a wired network, it sends them
to a central point, where they can be combined.

4.1 Illustration 49

We assume that acquiring transition counts in a strict per-cluster way (local
counts) has advantages. We briefly explore three example scenarios with different
advantages:

• Avoid communication over cluster borders. Note that each sensor only observes
presence. Transitions are not observed explicitly, but have to be deduced by
comparing logs from two adjacent sensors, after which they can be ag-
gregated into transition counts. Due to high communication costs, it is
important to do the aggregation from logs into counts close to the source
sensors.
If we were to collect global counts, this can mean two things: either the bor-
der sensors of the different clusters have to communicate with each other to
compare logs, or they have to send their logs to their respective hubs, so that
they can be compared using the wired network. The former option entails
communication between clusters. This could cause technical/organizational
difficulties due to incompatible communication standards between clusters;
but even if there are none, it is (possibly costly) communication that can be
avoided using our approach. The latter option means a lot of additional
communication from border nodes to hub.
Alternatively, our approach of collecting local counts means that one regis-
ters at the border when the object disappears or appears in this cluster (by
comparison of the logs of the border sensors and their neighbors within the
cluster); it is represented as a transition to or from the local ‘out-of-reach’
state, aggregated into the count, and sent to the hub at low cost. After-
ward, the data from all hubs can be combined (at low cost) using the wired
network, in order to deduce the counts of the border transitions using the
technique we present in the following sections.

• Allow for identity changes of objects when crossing cluster borders. There can also
be a more fundamental reason for not being able to distinguish inter-cluster
transitions: objects might have a different identity in different clusters. The
reasons for this can be technical (one cluster uses Bluetooth sensors, while
the other uses cameras) or privacy-related (all clusters use Bluetooth, but
the users of the mobile Bluetooth devices adopt a different identity in each
cluster to remain anonymous). In both cases, it is not possible to collect
global statistics of one specific object, but a goal can be to collect statistics of
the “average object”. Even then, we cannot directly infer transition counts by
comparing logs from c and d (figure 4.2): the objects appearing in d at time t
might not be the objects leaving from c at t − 1; they could also have come
from a. Note that we assume, in this case, that there are always multiple
moving objects in the area (which is in fact a prerequisite for attaining this
kind of anonymity).

• Allow non-synchronized collection of transition statistics. Collecting statistics
locally can also be an an advantage on its own. Consider the case when we

50 Local collection of transition frequencies

are interested in long-term statistics, and we have already collected these
for a certain observed area. Later, we extend the observed area by placing
sensors in a neighboring area. Using our approach, we can simply collect the
statistics for the new sensors and combine them with the existing statistics.

As we mentioned above, collecting local transition counts also has a disadvantage:
the transitions that cross cluster borders cannot be counted directly. Instead, we
only obtain an aggregate at both sides of the border. For example, in figure 4.2,
consider the number of the transitions from c to d, written #(c,d). In cluster C1,
these transitions are observed as exit transitions (c,away1), and in cluster C2 as
entrance transitions (away2,d). However, we can use #(c,away1) and #(away2,d)
to deduce #(c,d). From the arrangement of the granules it follows that:

#(c,away1) = #(c,d) + #(c,e)
#(away2,d) = #(c,d) + #(a,d) + #(b,d).

Together with the other transition counts, this forms a system of linear equations,
whose solution space is confined because transition counts are required to be
positive. Under certain conditions, the solutions lie so close together that a good
approximation of #(c,d) is possible.

These conditions are mainly dependent on the form of the graph of border-
crossing transitions, which we term the inter-cluster transition graph. In previous
work[23], we have shown that there can even be one exact solution, but this poses
quite restrictive conditions on this graph. In this chapter, by considering confined
solution spaces, we broaden these conditions.

The technical contributions of this chapter are:

• An analysis of the solution space, relating it to the form of the inter-cluster
transition graph.

• An efficient algorithm to determine the solution space.

• An experiment investigating the accuracy of an arbitrary solution from the
solution space, given several cluster arrangements similar to figure 4.2.

4.2 Traces, counts, frequencies and probabilities

In this section, we formalize the problem statement. As transition statistics we
will first use transition counts, leading to a first version of the problem statement.
Then we generalize the problem statement using transition frequencies, and also
briefly outline an approach with transition probabilities.

We assume that the structure of the state space, consisting of the possible
states and transitions, is known. This structure is expressed as a finite directed
graph G� = (V�,E�), of which the vertices V� correspond to states and the edges
E�
⊆ V�

× V� to transitions. We call this graph the global transition graph.

4.2 Traces, counts, frequencies and probabilities 51

Furthermore, the states are partitioned in n local clusters by a partition function
p : V�

→ {1, . . . ,n}. In cluster i (1 ≤ i ≤ n), a local state v with p(v) = i can be
observed as such, while the other states are all ‘out of local sensor reach’, and
together form one state awayi. We express this using an observation function oi:

oi(v) def
=

v if p(v) = i
awayi if p(v) , i

This induces a local transition graph C�
i = (V�

i ,E
�
i) for cluster i. Its vertices V�

i are
those states that oi maps to, and its edges are derived from the global transitions
by mapping their source and target state into their local observations. Formally:

V�
i = { oi(v) v ∈ V�

}

E�
i = { (oi(v), oi(w)) (v,w) ∈ E�

}

An example is shown in figure 4.3 for a small part of the location state space
in figure 4.2. The three local transition graphs in figure 4.3a are obtained from
the global transition graph in figure 4.3b using partition function p(a) = p(c) = 1,
p(d) = p(e) = 2, p(b) = 3. The colors serve as a visual aid for this partition function.

A trace T is a sequence of consecutive states, where T(τ) ∈ V represents the
state at time τ. A trace is consistent with the possible transitions, i.e. if T(τ) = s
and T(τ + 1) = t then (s, t) ∈ E�. Our main assumption is that it is impossible to
directly obtain a global trace of the system; however it is possible to obtain local
traces. A local trace is a sequence of local observations of consecutive (global)
states. The local trace observed in cluster i, derived from an unobservable global
trace T, is written oi[T]. It is defined by applying oi pointwise to each state in T:

oi[T](τ) def
= oi(T(τ))

Local trace oi[T] contains states in V�
i and is consistent with the transitions in E�

i .
If local traces oi[T] were available for all i, it would be trivial to reconstruct

T (and derive global transition counts or probabilities from it). Our assumption
is that, instead of local traces, only their corresponding transition counts are
available. Formally, a transition count #T(s, t) is the number of times that the
transition (s, t) occurs in trace T (i.e. the number of distinct times τ for which
T(τ) = s ∧ T(τ + 1) = t).

Thus, we arrive at a first formulation of the problem statement, in terms of
transition counts:

Assume we have, for each cluster i, a count #oi[T](s, t) of all local transitions
(s, t) ∈ E�

i . All counts are derived from the same (unobservable) trace T. Is it
possible to deduce or approximate #T(s, t) for all global transitions (s, t) ∈ E�?

Note that, in this formulation, all transition counts should be acquired over the
same period. We can generalize the problem to a broader setting in which this

52 Local collection of transition frequencies

is not required. For this we need to make two extra assumptions, namely that
the “average behavior” of the process does not change, and that the observed
traces are long enough to exhibit this average behavior. Formally, in terms of
Markov models, the first assumption is that the process is homogeneous (not time
dependent) and ergodic (keeps returning to all states). The second assumption
means that the ratios of observed transition counts (see below) approximate the
model’s probabilities.

When these assumptions are satisfied, the local observations can originate
from different global traces, that is, they can be performed at different times
(cf. the example allow non-synchronized collection in the introduction). The length
of these traces may also vary; in order to compare transition counts regardless,
we normalize them w.r.t. the trace length. These normalized counts are termed
transition frequencies and are defined:

FT(s, t) def
=

#T(s, t)∑
x,y #T(x, y)

From now on, our formulation of the problem will be in terms of these more
general transition frequencies:

Assume we have, for each cluster i, a frequency Foi[Ti](s, t) of all local tran-
sitions (s, t) ∈ E�

i . These frequencies may now originate from different
(unobservable) traces Ti, but the observed process should be homogeneous
and ergodic, and the traces should be sufficiently long (see above). Is it
possible to deduce or approximate FT(s, t) (with T an arbitrary, sufficiently
long trace) for all global transitions (s, t) ∈ E�?

The solution method presented in section 4.3 also applies to the first problem
statement, which is more restrictive in that only simultaneous observations can
be combined, but more permissive w.r.t. the nature of the process and the length
of the observations.

An illustration of the problem statement is shown in figure 4.3. We know the
frequencies on the local transition graphs, and the goal is to find the frequencies
on the global transition graph. Some of them can be directly copied, namely those
between states of the same cluster. For the others, which we term inter-cluster
frequencies, the structure of the global transition graph defines a system of linear
equations. For example, the relevant equations for the (c,d) transition are:

Fo1[T1](c,away1) = FT(c,d) + FT(c,e)
Fo2[T2](away2,d) = FT(c,d) + FT(a,d) + FT(b,d)

In the next section, we will show how to solve the system of equations.
Closely related to transition counts and frequencies are the transition probabil-

ities that form the parameters of a first-order Markov model. When we make the

4.2 Traces, counts, frequencies and probabilities 53

c

a b

d

e

away1

away2

away3

(a) For each of the three colored
clusters (C1,C2,C3), we know the
frequencies (not shown) on the
edges of the local transition graph.

c

a b

d

e

(b) We know the structure of the global
transition graph, and want to obtain the
frequencies on the edges. Intra-cluster
frequencies like F(c,a) can be directly
copied; inter-cluster frequencies like
F(c,d) cannot.

Figure 4.3: Problem statement.

assumption that the observed process can be described by such a model, the ob-
served transition counts or frequencies provide the maximum likelihood estimate
of these parameters:

P(Xτ+1 = t|Xτ = s) =
#(s, t)∑
y #(s, y)

=
F(s, t)∑
y F(s, y)

The basic use case for applying our technique with regard to Markov models is as
follows. We observe local transition frequencies in the clusters, use these to derive
the global transition frequencies, and use the latter to determine the parameters
of a global Markov model (using the above formula). In other words, the problem
is in terms of frequencies, and its solution is only translated to probabilities
afterward.

However, it is also possible that, instead of starting with local transition fre-
quencies, we want to start with local Markov models on the cluster state spaces Ci.
For example, the parameters of these Markov models could have been estimated
from noisy observations using expectation maximization (a hidden Markov model
setting). Under certain restrictions, it is possible to:

1. transform these local Markov models into local frequencies of long-term
average behavior;

2. then, use our technique to combine them into global frequencies of long-
term average behavior;

54 Local collection of transition frequencies

3. finally, use the above formula to calculate the maximum likelihood estimate
for the global Markov model.

To perform step 1, we can use the formula

F(s, t) = πCi (s)P(Xτ+1 = t|Xτ = s).

In this formula, a crucial role is played by the stationary distribution πCi , which can
be derived from the collective probabilities in the local Markov model on Ci. For
a further discussion on this transformation and its applicability, we refer to our
previous work[23].

4.3 Solving a flow with known vertex values

In the previous section, we formulated the problem of finding global transition
frequencies. In this section, we analyze this problem using a combination of linear
algebra and graph theory. The frequencies form a flow on the global transition
graph; we are looking for the unknown values of this flow, which are constrained
by known sums.

We show how solution space of the corresponding system of linear equations
is found by considering the structure of the inter-cluster transition graph. After
this, we take the requirement into account that all frequencies should be positive,
and show how it confines the solutions.

4.3.1 Problem definition

Given a directed graph G� = (V�,E�), a flow is a function f � : E�
→ R assigning

a value to each edge. A given flow f � establishes, for each vertex v ∈ V�, its
inflow f−(v) and outflow f +(v):

f−(v) =
∑

u|(u,v)∈E�

f �(u, v)

f +(v) =
∑

w|(v,w)∈E�

f �(v,w)
(--)

Our problem statement is described by exactly this system of equations, but with
the values of f � as unknown variables, and a known inflow and outflow for each
vertex.

In principle, the global transition graph from the problem statement in sec-
tion 4.2 corresponds to the G� graph of this system. This means that all frequencies
are variables in the system. However, we already know a lot of these frequencies,
namely those of transitions within a cluster. For convenience, we will disregard
these in our further analysis of the problem; we remove the corresponding vari-
ables from the system. For graph G�, this means that, for every transition (s, t)
within partition i (so p(s) = p(t) = i):

4.3 Solving a flow with known vertex values 55

c

a b

d

e

(a) Inter-cluster transition
graph G� (also shown, in
white, are the left out
intra-cluster transitions)

a+

a− b+

b−

d+

d−c+

c−

e+

e−

(b) G, the undirected
representation of G�

(‘uncoiled graph’)

1

1

1

1 1

c+

d−

{c+,d−}

V+

V−

E︷ ︸︸ ︷

(c) N, the incidence matrix of G.
Values in the white part are not
shown; the grey part has 0s except
where 1s are shown.

Figure 4.4: Three representations of the inter-cluster transition graph. The transition from
c to d is highlighted everywhere.

• we leave its edge out of the graph altogether. Vertices in which no transition
starts or ends anymore are also removed.

• we subtract its known frequency Foi[Ti](s, t) from f +(s) and f−(t).

After doing this, the remaining graph G� = (V�,E�) consists only of inter-
cluster transitions E� and the corresponding vertices V� (border granules)—see
figure 4.4a. For a vertex v in cluster i, the corresponding frequencies sum up to

f−(v) = Foi[Ti](awayi, v)
f +(v) = Foi[Ti](v,awayi)

We term the graph that is left over the inter-cluster transition graph. The problem
statement can then be summarized as follows: given inter-cluster transition graph
G� and the above values of f + and f−, we are looking for solutions f � that satisfy
(--). Essentially, this amounts to solving a system of linear equations
in which all coefficients are 1 or 0. Each edge corresponds to a variable, and each
vertex contributes the two equations that constitute (--).

However, to analyze the system using graph-theoretic concepts, it is more
convenient to have a one-to-one correspondence between vertices and equations.
With this goal in mind, we introduce a different representation of the graph G� and
the corresponding equations. We term this representation the uncoiled system.1

1The name uncoiled is chosen after the effect it has on loops in the graph. In our application,
however, we do not encounter loops, because a loop is a transition within a cluster, and has been
filtered out.

56 Local collection of transition frequencies

Definition 1. Given the directed graph G� = (V�,E�) with n vertices labeled
{v1, v2, . . . , vn}, we define its uncoiled graph G = (V,E). This graph G is a bipartite
undirected graph with partitions V = V+ + V−, where V+ = {v+

1 , v
+
2 , . . . , v

+
n } and

V− = {v−1 , v
−

2 , . . . , v
−
n }. Each vertex vi from the original graph is represented twice

in V: as a source v+
i and as a target v−i . The edge set E contains an undirected edge

{v+
i , v

−

j } iff E� contains a directed edge (vi, v j).

For an example, see figure 4.4b. A flow f � on the edges of the directed graph
is represented by a flow f on the corresponding edges of G: f {v+

i , v
−

j } = f �(vi, v j).
Again, this flow is assumed to be unknown, while the values of certain sums are
known. In the original directed system, these values were represented by two
different functions f + and f− on each vertex; in the uncoiled system this role is
played by one function f± : V → R on the two different types of vertex. The two
representations are related as follows:

f±(v+
i) = f +(vi)

f±(v−i) = f−(vi)

The problem statement can now be formulated in terms of the uncoiled system:
given the uncoiled representation G of inter-cluster graph G�, and the vertex
sums f± above, find a flow f : E→ R that satisfies, for all v,

f±(v) =
∑

w|{v,w}∈E

f {v,w}. (-)

As in the above equation we will hereafter often refer to the vertices in V regardless
of whether they are in partition V+ or V−. In these cases we also use the variable
vi, imposing a certain ordering: V = {v1, v2, . . . , v2n}. Likewise, we order the edges
as {e1, e2, . . . , em}; we keep the convention that |V| = 2n and |E| = m.

With such orderings in place, the uncoiled system can easily be written in
the matrix-vector form conventional in linear algebra. The matrix of coefficients
corresponds to G’s incidence matrix N (figure 4.4c):

Ni j
def
=

1 if vi ∈ e j

0 if vi < e j

Using the same orderings, the functions f± and f are represented as vectors:

f± def
= (f±(v1), f±(v2), . . . , f±(v2n))T

f def
= (f (e1), f (e2), . . . , f (em))T

The matrix-vector formulation of our problem statement is then as follows: given
N and f±, find a solution f of the system

Nf = f±. (-)

4.3 Solving a flow with known vertex values 57

In principle, this system can be solved using basic textbook techniques such as
Gauss-Jordan elimination. Instead, we exploit the special structure of N—the
equations are partitioned into two sets, and each variable participates in exactly
one equation of each set—and solve parts using graph theory. This approach
provides us with:

• insight in the structure of the solution space: its existence and dimensions
are related to components and cycles in the uncoiled representation of the
inter-cluster transition graph;

• an efficient method of solving the system.

4.3.2 Solution

A basic result in linear algebra is that every solution f of Nf = f± can be written
in the form f = p + k where p is any fixed particular solution of the system, and k
is a solution of Nk = 0. All possible solutions of this last equation define N’s null
space or kernel:

Ker N def
= { k Nk = 0 }

Conversely, all vectors f that can be written as f = p + k are solutions. Hence, to
specify all the solutions of the system, it is enough to give one particular solution
p and a specification of Ker N. This specification has the form of a basis, a minimal
set of vectors of which every k is a linear combination.

We show that both can be found by considering an arbitrary spanning tree
of G:

• A particular solution can be found by solving the system with only the edges
of the tree, and assigning f (e) = 0 for each left-out edge e.

• The basis vectors correspond to the fundamental cycles w.r.t. this tree: cycles
that are obtained by putting one of the left-out edges back in.

To find G’s spanning tree S (or more accurately, as G might have multiple compo-
nents, its spanning forest S) and simultaneously construct a particular solution p,
we present Algorithm 1. It does a depth-first traversal of the components of G; on
the way back along an edge, it fills in the corresponding element of p. For edges
that would create a cycle, it fills in 0. An example is shown in figure 4.5.

Note that the algorithm constructs a function (a flow). Again, we represent it
as a vector using the edge ordering: p def

= (p(e1), p(e2), . . . , p(em)). Furthermore, we
assume hereafter, without loss of generality, that the left-out edges E − S are last
in this ordering. Each left-out edge yields one of G’s fundamental cycles w.r.t. S:

58 Local collection of transition frequencies

Input: bipartite graph G = (V,E) and vertex summations f± : V → R
Output: solution p that matches the summations as in (-), and

spanning tree S

p← the empty (partial) function on E→ R
S← ∅
visited← ∅

while visited , V do
root← an arbitrary element of (V − visited)
SolveSubtree(root, ∅)
if f±(root) ,

∑
v f {root, v} then error ‘no solution exists’

end

procedure SolveSubtree(root,maybeparent)
// maybeparent records the node we came from, to prevent going back
if root ∈ visited then

// cycle detected
p(maybeparent ∪ {root})← 0

else
visited← visited ∪ {root}
foreach v ∈ (V −maybeparent) such that {root, v} ∈ E do

SolveSubtree(v, {root})
end
if maybeparent , ∅ then

S← S ∪ {maybeparent ∪ {root}}
p(maybeparent ∪ {root})← f±(root) −

∑
v f {root, v}

end
end

end
Algorithm 1: A depth-first traversal of each component of the graph, record-
ing a particular solution in p and constructing a spanning tree S.

Definition 2. Let G be a graph with m edges {e1, e2, . . . , em}, of which the first
s edges {e1, e2, . . . , es} form a spanning tree S. For each q with s < q ≤ m, the
fundamental cycle fq contains eq and the edges in S that form a cycle with it. Instead
of identifying fq with this set of edges, we define it to be a vector of length m with
alternating 1 and −1 on the positions corresponding to these edges:

fq(q) def
= 1

fq(i) def
= 1, for ei on the cycle at an even distance of eq

fq(j) def
= −1, for e j on the cycle at an odd distance of eq

fq(k) def
= 0, for ek not on the cycle

4.3 Solving a flow with known vertex values 59

3

5
3

4

9
9

1
8

3 1

7

5

1 3
1

5

(a) Partial solution after the
traversal of some one-node
subtrees. These nodes
connect only to one edge, so
the value on this edge
should equal the node value.

3

5
3

4

9
9

1
8

3 1

7

5

1 3
1

5

2

(b) Now, there is only one
empty edge left for the 7
node, so we can deduce its
value:
7 − 5 = 2.

3

5
3

4

9
9

1
8

3 1

7

5

1 3
1

5

2
26

3 1
2

3

(c) Likewise, we continue up
the tree. After having filled
in the last edge, we check
whether the sum in the root
node (= 3) is correct. It is, so
we have found a solution.

Figure 4.5: Finding a particular solution. The goal is to find p values at the edges that sum
up to the given f ± values in the nodes. This is done by a traversal of a spanning tree, here
rooted in the topmost node. After traversal of each subtree, the value of the connecting
edge can be deduced. Edges not in the tree (dashed) are given the value 0.

3

5
3

4

9
9

1
8

3 1

7

5

1 3
1

5

2
26

3 1
2

3

(a) Particular solution.

+

0

0
0

0

0
0

0
0

0 0

0

0
α1

−α1

α1
−α1

(b) Fundamental cycle 1.

+

0

0
0

0

0
0

0
0

0 0

0

0
α2

−α2

α2

−α2α2

α2

−α2

−α2

(c) Fundamental cycle 2.

Figure 4.6: Each fundamental cycle leads to solutions of Nf = 0. By adding them to the
particular solution of the original system Nf = f±, we find other solutions of that system.
For example, the edges of the top-left node get the values 3 + α1 − α2 and 1 − α1 + α2,
respectively. Together, these still add up to 4.

See also the examples in figure 4.6, where fq has been multiplied by α1 and
α2, respectively. Note that it makes sense to speak about even and odd distances
because the cycles in our graph are always of even length (because the graph is
bipartite). Vector fq forms a solution of Nf = 0, because in the vertex sums f±,
every vertex on the cycle has two terms that cancel each other out; all the other
terms, also for the other vertices, are zero.

So far, we have made it plausible that Algorithm 1 provides us with a p for

60 Local collection of transition frequencies

which Np = f±, and vectors fq for which Nfq = 0. When we construct a m× (m− s)
matrix B def

= [fs+1, . . . , fm] containing the fundamental cycles, we get a succinct
characterization of the solutions to (-) found until now:{

p + Bα α ∈ Rm−s }
In the remainder of this section, we will give proof sketches that

• if a solution exists, Algorithm 1 will find one (we also provide the conditions
for existence);

• the fundamental cycles fq form a basis of Ker N;

so the solutions described above are indeed all the solutions.

Theorem 1. If Nf = f± has a solution, it also has one that is zero on all edges E − S.

Proof. Suppose f = (fS; fL) is a solution with values fS for edges S and fL for
E − S. We construct a vector z that is zero on es+1, . . . , em: z def

= f − BfL. Then
Nz = Nf −NBfL = f± − 0 = f±. �

Hereby, we justify the fact that Algorithm 1 sets the solution for the E − S
edges to 0; this does not prevent it from finding a solution. In other words, solv-
ing (-) for graph G reduces to solving (-) for its spanning
forest S.

Definition 3. A component C = (VC,EC) is a subgraph of G, where VC ⊆ V is a
maximal set of transitively connected vertices, and EC = {{v,w} ∈ E|v,w ∈ VC} the
corresponding edges. In other words, a component consists of all the vertices and
edges reachable from a certain vertex. We also define V+

C and V−C , the classes of
the bipartition within C:

V+
C

def
= VC ∩ V+

V−C
def
= VC ∩ V−

Theorem 2. A system (G, f±) with G a bipartite graph has a solution for (-)
iff for each component C of G the following equation holds:∑

v∈V+
C

f±(v) =
∑
v∈V−C

f±(v)

If this is the case, Algorithm 1 will find a solution p (which is the unique solution on
spanning forest S); if not, Algorithm 1 will halt with an error.

4.3 Solving a flow with known vertex values 61

Proof (sketch). We already saw that the problem reduces to solving (-)
on spanning forest S. For each component C of S (which has the same vertices as
the corresponding component of G), we can prove by induction on subtrees that
it finds the unique values of p that satisfy the f± equations for all v ∈ VC except
the root vertex. When we group together all vertices v with the same distance
d(v) = n to the root vertex, these take the form (for n > 0):∑

d(v)=n

f±(v) =
∑

d(u)=n−1
d(v)=n

p{u, v} +
∑

d(v)=n
d(w)=n+1

p{v,w}.

If we subtract the equations for even d(v) from those for odd d(v), we get:∑
d(v) odd

f±(v) −
∑

d(v)>0 and even

f±(v) =
∑

d(u)=0
d(v)=1

p{u, v}.

Now, iff the f± equation also holds for the root vertex (d(v) = 0),
∑

f±(v) is the
same for odd and even d(v), and since the V+

C and V−C vertices appear at alternating
distances, for v ∈ V+

C and v ∈ V−C . �

Theorem 3. Let G be a bipartite graph with incidence matrix N, and a matrix of
fundamental cycles B (w.r.t. spanning forest S). Then each k ∈ Ker N can be written as
Bα for a certain α.

Proof. Suppose k = (kS; kL) with values kS for edges S and kL for E−S. Again, we
construct z def

= k − BkL, whose elements for edges not in S are zero, and for which
Nz = 0. By Theorem 2, the solution z for this system is unique; so it must be the
trivial z = 0. Therefore, k = BkL. �

So, every k ∈ Ker N is a linear combination of the fundamental cycles. Fur-
thermore, fundamental cycle fq cannot be a linear combination of the other fun-
damental cycles, because fq(q) = 1, and all the other fi have fi(q) = 0. Hence, the
fundamental cycles form a basis of Ker N.

4.3.3 Inequalities

Until now, we have disregarded the fact that a meaningful solution to our original
problem can only consist of positive frequencies. So, in addition to satisfying
(--), the flow f � should have f �(u, v) ≥ 0 for every edge (u, v). This
requirement can drastically reduce the space of possible solutions, which we can
put to good use.

We write the m inequalities as follows (ei is a vector of length m with ei(i) = 1
and ei(j) = 0 for j , i)):

ei(p + Bα) ≥ 0 for all 1 ≤ i ≤ m

62 Local collection of transition frequencies

This can be rewritten to
−Bi?α ≤ p(i)

in which Bi? denotes the ith row of matrix B. This row contains the coefficients
(either 0, 1 or -1) of all fundamental cycles on edge ei. For example, the top-left
edge in figure 4.6 yields the inequality −(1,−1) · (α1, α2)T

≤ 3.

4.4 Experiment

As we described in section 4.3.3, the solution space can be quite small due to the
requirement that every frequency should be positive. In this section, we describe
an experiment to test whether the space is indeed so small that an arbitrary
solution from this space will be close enough to the original values.

For this experiment, we use a state space which is structured like figure 4.2:
a triangular grid in which each state has six neighbors to which transitions are
possible. Also like in figure 4.2, the clusters in which we partition the space are
hexagonal; they consist of a center state and r concentric layers (r = 2 in the
figure). This number r is called the cluster radius.

We then assign an arbitrary transition frequency to each transition; however,
we do make sure that, per state, all outgoing and all incoming frequencies add up
to the same number. Then, we discard the transitions within clusters, after which
we are left with the inter-cluster transition graph and a flow f0. We calculate the
aggregations f±, and use these as input to the linear system {Nf = f±, f ≥ 0}, which
we solve using the method outlined in section 4.3. (Note: the existence condition
in Theorem 2 is satisfied, as we already know there is a solution f0).

From the solution space constrained by the inequalities, we pick an arbitrary
vector f, and measure how close it is to f0 using a metric defined below. Unfor-
tunately, this step presents a problem: it is far from trivial to generate a vector
satisfying all the inequalities. As we are working in MATLAB, we have tried
using its linear programming algorithms to this end (i.e. we find the f in the
solution space that minimizes an arbitrary linear function), but they often did
not succeed in finding a vector. After some experimentation, we found that
MATLAB’s quadratic programming algorithms do succeed. We also found that
picking a more or less ‘balanced’ vector produced better results than picking a
truly random vector.

This balanced vector f is the vector from the solution space which is closest
to a certain b (which is generally not in the solution space). We define b as the
following vector: for each i, we divide both the f±(v+

i) and the f±(v−i) sums evenly
over the incident edges; of the two values that each edge is assigned in this way,
we take the average. However, in this process we ignore every edge e j that is
not on any cycle, because it takes the same value f (e j) = p(j) in every solution.
So, before dividing the f± sums, we first subtract these fixed values from them.
Finding f then consists of minimizing a quadratic function over the constrained

4.5 Conclusions and future work 63

solution space, for which we have used MATLAB’s quadprog library function
(from the Optimization Toolbox).

After picking a f, we evaluate its accuracy—the difference between f and f0.
We used the following measure:

median{abs(f(i) − f0(i))|ei on a cycle}
avg f0

In other words, we take the median error of all edges that are on a cycle; to
compare the different experiments, we normalize this error by dividing it by the
average edge value.

4.4.1 Results

We have performed the above experiment with multiple configurations. We
varied the size of the global state space from a 50 × 50 grid to a 150 × 150 grid,
and the radius of the clusters from 5 to 15. In a first set of configurations, we
increased these sizes simultaneously, because we wanted to investigate the effect
of increasing the state granularity (while the number of clusters stays the same).
In the second set of configurations, we keep the cluster size fixed at 10 and only
vary the grid size (and hence the number of clusters). Each configuration is run
25 times to reduce the effects due to randomness of the original vector.

To give an impression about the size of the linear problems: the smallest inter-
cluster graph (radius-10 clusters on a 50×50 grid) contains 900 edges, 436 vertices,
and 29 fundamental cycles. The largest (radius-10 clusters on a 150 × 150 grid)
contains 8736 edges, 4176 vertices, and 385 fundamental cycles.

For the first set of configurations, our hypothesis was that the accuracy be-
comes better with a higher state granularity. We expected this because the number
of on-cycle edges (inequalities) increases while the number of fundamental cycles
(dimensions) stays the same. Figure 4.7 shows that we were right.

For the second set of configurations, we expected the accuracy roughly to
stay the same, because the number of on-cycle edges as well as the number of
fundamental cycles grow linearly. Figure 4.8 shows the accuracy.

The running time of quadprog function varied from 0.17 sec for the smallest
problem to 481 sec for the largest.

4.5 Conclusions and future work

In this chapter, we have investigated how to combine local transition counts
into global transition counts, and whether it is worthwhile in terms of accuracy.
Experiments on random data have shown that for a cluster radius of 15, half of
the estimated counts fall within 4% of the real values; of course, it depends on the
application whether this is good enough.

64 Local collection of transition frequencies

 0% 5% 10% 15% 20% 25% 30% 35% 40%
 0%

 2%

 4%

 6%

 8%

10%

12%

14%

16%

error (relative to average edge value)

pe
rc

en
ta

ge
 o

f e
dg

es

radius 15
radius 10
radius 5

Figure 4.7: Distribution of errors on edges,
first set of configurations.

 0% 5% 10% 15% 20% 25% 30% 35% 40%
 0%

 2%

 4%

 6%

 8%

10%

12%

14%

16%

error (relative to average edge value)
pe

rc
en

ta
ge

 o
f e

dg
es

150x150 grid
100x100 grid
50x50 grid

Figure 4.8: Distribution of errors on edges,
second set of configurations.

For our technique to scale to large numbers of clusters, using MATLAB’s
quadprog algorithm is not an option because it is too slow. We need to find an
algorithm that does not scale exponentially. It probably does not have to find an
optimal solution like quadprog; any solution could be good enough. If even that
is out of reach, we could settle for an approximate solution.

A related research question is whether it is possible to solve the combination
of cluster frequencies incrementally per cluster. The idea is to start with one cluster
and a large away state. Then, we position a new cluster in this away state (still
leaving room for more) and solve the problem. We continue like this for the other
clusters. In our localization example, this would correspond to a situation in
which we gradually add sensor clusters, thereby enlarging the observed area.

Finally, we would like to have a sound method to deal with inconsistencies
between the several local frequencies. In this chapter, we have assumed that the
local frequencies are consistent with each other—either because they result from
the exact same global trace, or because the different traces are all so long that
the frequencies have converged to the transition probabilities. In both cases, the
result is that

∑
v∈V+

C
f±(v) =

∑
v∈V−C

f±(v) for each component, and the system has
an exact solution. In practice, we do not expect this to be the case, and it would be
useful to be able to give the best estimate for the solution (maybe using maximum
likelihood or Bayesian techniques).

Chapter 5

Probabilistic inference in a
relational representation

Given a probabilistic model over a set of variables, inference is the task of de-
riving the probability distribution over a subset of query variables, given the
observed values of another subset of evidence variables. As we have explained
in section 2.5, this forms the basis of probabilistic sensor data processing.

The problem of how to efficiently perform inference for Bayesian networks has
been extensively researched in AI literature, which has led to well-known infer-
ence procedures such as variable elimination[61] and junction tree propagation[45].
However, as we discuss in chapter 6, these conventional procedures do not suffice
for our sensor data models.

In this chapter, we recast the problem into a relational algebra framework, in
which the building blocks are the bulk operators ∗Z and +

π on structured tables
of probabilities p[B|A], rather than individual multiplications and additions on
single probabilities P(B=b|A=a). The resulting expressions are assigned a well-
defined denotational semantics, which is at the same time

(a) similar to the summations over factorized probability distributions used in
conventional procedures, and

(b) based on the basic relational algebra commonly used in database semantics.

To evaluate such an expression, it can either be assigned an operational seman-
tics based on multi-dimensional array assignments (again associated with the
conventional procedures), or mapped to physical database operations.

We have found this formulation to yield a lot of insight into possible optimiza-
tions for sensor data; these are presented in chapter 6. In the current chapter:

• we review the general inference problem (section 5.1),

66 Probabilistic inference in a relational representation

• we introduce the relational algebra framework (section 5.2),

• we present a general outline for solving an inference query (section 5.3)

• we introduce sum-factor diagrams for visualizing solutions (section 5.4),
and

• we review the conventional inference procedures using relational algebra
(section 5.5).

5.1 The inference expression for Bayesian networks

An inference task, or inference query, partitions the Bayesian network nodes V̄
into query nodes Q̄, evidence nodes Ē and the remaining nodes R̄. In this chapter,
we make the distinction between nodes V̄ and probabilistic variables XV̄ again;
the latter are partitioned into XQ̄, XĒ and XR̄. The inference task is to calculate
P(xQ̄ |xĒ) for all values xQ̄, given certain values xĒ. This probability can be written
in terms of the joint probability P(xV̄) = P(xQ̄, xĒ, xR̄):

P(xQ̄ |xĒ)
= definition of conditional probability

P(xQ̄, xĒ)
P(xĒ)

= applying (M)p. 15 on both sides of the fraction bar∑
xR̄

P(xQ̄, xĒ, xR̄)∑
xQ̄

∑
xR̄

P(xQ̄, xĒ, xR̄)

It is only necessary to calculate the outcome of the numerator for all xQ̄ values;
the denominator can be obtained by adding all these outcomes. Therefore, to
simplify the expositions, we will hereafter equate inference with the calculation
of P(xQ̄, xĒ):

P(xQ̄, xĒ) =
∑
xR̄

P(xV̄) (I)

The equation above suggests a naive way to perform this calculation: for each
value xQ̄, determine the joint probability P(xQ̄, xĒ, xR̄) at the observed xĒ for all xR̄,
and add these together. However, the time taken by this approach is exponential
in |Q̄ ∪ R̄|, the number of unobserved variables: the sum is evaluated for each
possible xQ̄ value (note: in case of multiple query variables, this means each
possible combination, i.e. a |Q̄|-tuple of values), and to each of these sums, all the
xR̄ values (combinations) contribute a term. In the dynamic Bayesian networks
used for sensor data processing, |R̄| is proportional to the number of time points
taken into account, which can even grow indefinitely in a streaming setup; hence,
this naive approach is out of the question.

5.1 The inference expression for Bayesian networks 67

Making use of the factorization (F-BN)p. 19 of a Bayesian network’s joint
probability can reduce the inference cost dramatically, depending on the structure
of the graph. In a dynamic Bayesian network, this structure is essentially a chain
in the time dimension. As we will show in section 6.1, this allows the inference
cost to be linear w.r.t. the number of time points, and therefore acceptable in a
streaming setup. Substituting (F-BN) into (I) gives:

P(xQ̄, xĒ) =
∑
xR̄

∏
V∈V̄

P(xV |xParents(V)) (I-BN)

Depending on the composition of the product, some factors can be pulled out of
the summations due to the distributive laws (Σ-D-L) and (Σ-D-R)p. 19; it
is sometimes suggested that this makes the expression more efficient to evaluate,
and therefore forms the basis of efficient inference algorithms.

This statement alone, although not entirely untrue, is somewhat misleading.
For example, if the product is P(a)P(b|a)P(c|b), we can rewrite:∑

a,b,c

P(a)P(b|a)P(c|b) =
∑

a

P(a)
∑

b

P(b|a)
∑

c

P(c|b)

If we expand each
∑

-expression into a list of additions in the above equation,
the left hand side contains 2 ∗ |dom(A)| ∗ |dom(B)| ∗ |dom(C)|multiplications while
the right hand side contains |dom(A)| ∗ (1 + |dom(B)|), so the latter can indeed be
considered more efficient.

However, it still contains the same number of additions: |dom(A)| ∗ |dom(B)| ∗
|dom(C)| − 1. A lot of them are redundant: each summation that is expanded
from

∑
c P(c|b) is copied |dom(A)| times, although it does not depend on a. To

eliminate this redundancy, we have to introduce a notion of sharing or storage into
the expressions. We rewrite the expression as a program consisting of assignments;
each of these is evaluated only once, after which the result can be reused multiple
times.

µ1 ←
{

b 7→
∑

c P(c|b) b ∈ dom(B)
}

µ2 ←
{

a 7→
∑

b P(b|a)µ1(b) a ∈ dom(A)
}

return
∑

a P(a)µ2(a)

Both intermediate results µi are represented as a set-theoretic function—a set of
key-value pairs k 7→ v. In concrete programming language terms, a concept
matching more closely to the intended semantics would be a dictionary; the idea
is that the value v is calculated when µi is created, after which it can be looked up
using µi(k).

However, in AI literature, µ1 and µ2 are usually implemented as arrays: a
certain order is imposed on the keys, and the array consists only of the function
values in this order. Often, these arrays are conceived as messages which are sent
from one processing node to another.

68 Probabilistic inference in a relational representation

Although the expression has an efficient evaluation when it is represented
as a program, it is more cumbersome to read, and harder to reason about. For
example, it is not easy to see that it is equivalent (equal in value, not in processing
time) to the following program:

µ3 ←
{

b 7→
∑

a P(a)P(b|a) b ∈ dom(B)
}

return
∑

b,c µ3(b)P(c|b)

One first has to transform the programs back into single expressions, and then
compare these.

As a better alternative, we advocate a relational representation, in which the
basic building blocks of an expression are sets of values like µ1, instead of single
values like µ1(b). Consider the following example:

+
π−A

(
p[A] ∗Z

+
π−B

(
p[B|A] ∗Z

+
π−Cp[C|B]

))
=

+
π−B,C

(
+
π−A

(
p[A] ∗Z p[B|A]

)
∗Z p[C|B]

)
This equation expresses both the above programs, and their equivalence, in one
line. The two expressions have the same denotational semantics; we define these in
terms of relational algebra, which is defined itself using set theory (section 5.2).
Using well-known rewrite rules for relational algebra, the equivalence of the two
expressions can be established; moreover, these rules can be used to derive new
equivalent expressions.

Next to the denotational semantics, these expressions are also given an opera-
tional semantics. This can either be done in terms of arrays, or in terms of database
operations; see section 5.2.3. This marks a clear difference compared to the ini-
tial situation described above, where the operational semantics are linked to the
programs while denotational semantics are given to expressions.

5.2 Relational expressions for inference

In this section, we define our relational framework for inference expressions. We
start by reviewing conventional relational algebra in section 5.2.1, followed in
section 5.2.2 by a definition of the denotational semantics of the p[. . .], ∗Z and +

π
operators specific for inference expressions. In section 5.2.3, operational semantics
are discussed.

5.2.1 Relational algebra

As a basis for our semantics, we use a simple variant of relational algebra with
an extended projection operator that can express aggregation (similar to SQL’s
group by construct). We have chosen for an algebra with Z as a basic operation
instead of ×; when two relations have a common attribute, we always use it in
a join condition. In fact, in our algebra it is impossible to do a cross-product in

5.2 Relational expressions for inference 69

such a case; it would require some formal renaming scheme to distinguish the
two attributes in the result schema, which implies more effort than we want to
impose on the reader. We use the following set-theoretic framework:

• We presuppose a set of attributes Attr and a set of values Val ; each attribute
A ∈ Attr has a domain dom(A) ⊆ Val .

• A relation r consists of a schema, denoted as schema(r), and a set of tuples.

• A relation’s schema consists of a set of attributes: schema(r) ∈ ℘Attr .

• A relation’s set of tuples is also simply denoted as r. Each tuple t ∈ r is
a function with dom(t) = schema(r), where t(A) ∈ dom(A) for each A ∈
schema(r).

We define a natural join Z:

t ∈ (r Z s)
⇐⇒

dom(t) = schema(r) ∪ schema(s),
(schema(r) C t) ∈ r,
(schema(s) C t) ∈ s

Here, C is the restriction of a function to a part of its domain:

x̄ C f def
=

{
(x, y) (x, y) ∈ f ∧ x ∈ x̄

}
The generalized projection operatorπ performs projection and aggregation. It has
two parameters: a list of attributes A1,A2, . . . from r onto which to project, and a
list of aggregation functions and new attributes. An aggregation function fi maps
a relation to a value in dom(Ni). For each tuple in the result, it is applied to the set
of tuples from r that agree with that tuple on the A values (see also figure 5.1).

t ∈ πA1,A2,..., f1 7→N1, f2 7→N2,...r
⇐⇒

∃r′. r′ = { t′ t′ ∈ r, {A1,A2, . . .} C t′ = {A1,A2, . . .} C t } ,
r′ , ∅,
dom(t) = {A1,A2, . . . ,N1,N2, . . .},

t(Ni) = fi(r′)

The only aggregation function that we will use is SUMX (where X is the attribute
over which to sum):

SUMX(r) =
∑
t∈r

t(X)

70 Probabilistic inference in a relational representation

A1, A2, . . . B1, B2, . . .
α . . .
a . . . r′a . . .
a . . .

æ . . .
æ . . .

(a) relation r

A1, A2, . . . N1 N2 . . .
α . . .
a f1(r′) f2(r′) . . .
æ . . .

(b) relation πA1 ,A2 ,..., f1 7→N1 , f2 7→N2 ,...r

Figure 5.1: The π operator in our algebra is extended with aggregation functionality. From
the input relation r, each set of tuples r′ ⊆ r that agrees on the Ai attributes corresponds
to one tuple in the result relation. Under the Ni attributes in this tuple, the aggregation
functions fi are applied to r′. If the fi 7→ Ni list is empty, the operator corresponds to
conventional projection.

The rename operator ρ replaces a tuple’s attribute Ai with Ni (and requires that
Ni < schema(r) and dom(Ni) = dom(Ai)):

t ∈ ρA1 7→N1,A2 7→N2,...r
⇐⇒

∃t′. t′ ∈ r,
t′(Ai) = t(Ni)
∀A ∈ (schema(r) \ {A1,A2, . . .}). t′(A) = t(A),
dom(t) = (schema(r) \ {A1,A2, . . .}) ∪ {N1,N2, . . .}

To define a selection operator σθ, we need to modelθ: a predicate such as A1+A2 =
A3, in which attributes take the place of values. We model these predicates as
functions of type (Attr → Val) → B: given a certain binding of type Attr → Val ,
they produce a Boolean value. We refer to the set of attributes in such an expression
as its schema, and denote it schema(θ). We require that schema(θ) ⊆ schema(r).

t ∈ σθr
⇐⇒

t ∈ r, θ(t)

We will also need some less conventional operators. We define the embodiment of
θ, denoted JθK, which is the relation consisting of all the bindings that satisfy θ.
Suppose schema(θ) = {A1,A2, . . .}, then:

t ∈ JθK
⇐⇒

dom(t) = {A1,A2, . . .}, θ(t), t(Ai) ∈ dom(Ai)

5.2 Relational expressions for inference 71

Likewise, we define the embodiment of a set of attributes as the set of all possible
bindings of these attributes:

t ∈ JA1,A2, . . .K
⇐⇒

dom(t) = {A1,A2, . . .}, t(Ai) ∈ dom(Ai)

Finally, we introduce Zθ, a variant on the join operator that produces only tuples
for whichθholds. It is not a primitive of the relational algebra and its denotational
semantics are simply given by:

r Zθ s def
= σθ (r Z s)

We include it because it can be implemented by very efficient ‘physical opera-
tors’; see section 5.2.3. If θ is selective, these operators avoid creating a large
intermediate result. We use it in the following rewrite rule:

r Z JθK = r Zθ Jschema(θ) \ schema(r)K

5.2.2 Operators for the inference expression

As we have mentioned in section 2.2, the cpd P(b|a) is actually a function (say,
f): given a value b for probabilistic variable B and a value a for A, it produces
a function value f (b, a), which is a value between 0 and 1. It is commonly im-
plemented (cf. section 5.1) as a multi-dimensional array in which all the function
values are stored; application of the function f to values a and b corresponds to
looking up the element of the array at indices a and b. In inference procedures, an
often used operation is the ‘multiplication’ of such an array with another one, say
g(c, b) = P(C = c|B = b). This multiplication operation ~ should be defined such
that

(f ~ g)(a, b, c) = f (b, a) ∗ g(c, b) = P(B = b|A = a) ∗ P(C = c|B = b)

Using the above function representations, it is impossible to define ~ in a generic
way; in the above definition, we used the fact that the argument corresponding to
variable B is the first one of f and the second one of g, and this ‘meta-information’
is not present in the functions (or arrays) themselves. Using the relational repre-
sentation from the previous section, such a generic operator is possible, because
relations are joined using the identity of the attributes instead of their order.

Before representing a probability distribution as a relation, we first represent a
general expressionφ as a relation. In this expression, attributes are again assumed
to take the place of values: a possible expression might be (A + B) ∗ (A + C).
Similar to the embodiment J. . .K of predicates, we define an embodiment J. . .Kval
of expressions, such that relation J(A + B) ∗ (A + C)Kval contains every possible
binding of A, B, and C, together with the resulting value of the expression under
a dedicated attribute val—see figure 5.2c for an example. In general:

q
φ
y

val
def
=

q
φ = val

y
(R-E)

72 Probabilistic inference in a relational representation

A B val
1 2 3
1 3 4

(a) JA + BKval

A C val
1 10 11
1 100 101
1 1000 1001

(b) JA + CKval

A B C val
1 2 10 33
1 2 100 303
1 2 1000 3003
1 3 10 44
1 3 100 404
1 3 1000 4004

(c) J(A + B) ∗ (A + C)Kval
= JA + BKval

∗Z JA + CKval

A B val
1 2 3339
1 3 4452

(d)
q∑

c∈{10,100,1000}(A + B) ∗ (A + c)
y

val
=

+
π−C J(A + B) ∗ (A + C)Kval

=
+
π−C

(
JA + BKval

∗Z JA + CKval
)

Figure 5.2: Left: the embodiment of the expressions A + B and B + C, with dom(A) = {1},
dom(B) = {2, 3}, and dom(C) = {10, 100, 1000}. Middle: the embodiment of their product
(A+B)∗(B+C) illustrates the equality (R-M). Right: the embodiment of a summation
over this product illustrates (R-S).

A lot of the relations that we define hereafter will represent an expression and
its possible values; we will refer to the non-val attributes of such a relation r as
regular attributes, and use the notation regattr(r):

regattr(r) def
= schema(r) \ {val}

For every binding of φ, the expression has exactly one value val, so the regular
attributes of

q
φ

y
val form a key of this relation. Without proof, we mention that this

holds for every other relation r in this thesis: regattr(r) is a key.
We now consider the multiplication of two expressions. We need an operator

∗Z such that q
φ
y

val
∗Z JψKval =

q
φ ∗ ψ

y
val (R-M)

In terms of the above relational algebra, this can be achieved by joining
q
φ

y
val

and JψKval on their common regular attributes, and multiply the values in their
respective val attributes. Hence, the operator is defined as follows:

r ∗Z s def
= πregattr(r)∪regattr(s), m7→val(r Z ρval7→val′s)

m({t}) = t(val) ∗ t(val′)

Note that we ‘misuse’ the extended projection π here to multiply the two values.
The aggregation function m is only applied to ‘groups’ of one tuple, because
the projection attributes regattr(r) ∪ regattr(s) form a key. As an illustration that
(R-M) holds for this ∗Z operator, consider fig. 5.2a–5.2c; we skip the formal
proof. By (R-M), the identity element for ∗Z is J1Kval, a relation with 1

5.2 Relational expressions for inference 73

attribute (val) and 1 tuple t for which t(val) = 1:

J1Kval
∗Z r = r

For later use, we also define an efficient ∗Zθ variant that uses Zθ instead of Z:

r ∗Zθ s def
= πregattr(r)∪regattr(s), m7→val(r Zθ ρval7→val′s)

m({t}) = t(val) ∗ t(val′)

The following operator we define is +
π−{A1,A2,...}. Given a relation representing the

expressionφ, it should produce the sum of the values ofφ for all possible bindings
of a set of attributes {A1,A2, . . .}:

+
π−{A1,A2,...}

q
φ

y
val =

q∑
a1∈dom(A1)

∑
a2∈dom(A2) · · ·φ[a1/A1, a2/A2, . . .]

y
val (R-S)

We define the operator (and a variant of it) as follows:

+
π−{A1,A2,...}r

def
= πregattr(r)\{A1,A2,...}, SUMval 7→valr

+
π{A1,A2,...}r

def
= π{A1,A2,...}, SUMval 7→valr

The second variant does not mention the attributes that are summed out (projected
out), but those that remain. While the first variant bears a direct relation to the∑

operator as defined in the equations above, the second variant appeals to the
notion of projecting a multi-dimensional distribution onto the mentioned subset
of its dimensions, i.e. deriving P(xA, xB) from P(xA, xB, xC).

Due to equations (R-S) and (R-M), every expression consisting
of

∑
and ∗ operators—and in particular, the inference expression—can be repre-

sented using the bulk operators +
π and ∗Z instead. A consequence of this is that

the same equalities apply:

• In a multi-dimensional sum
∑

a
∑

b f (a, b, c) order is of no importance (we
might also write it

∑
b
∑

a f (a, b, c) or
∑

a,b f (a, b, c)), so this also holds for the
first variant of +

π: +
π−A

+
π−Br =

+
π−B

+
π−Ar =

+
π−{A,B}r.

• The normal multiplication operator ∗ is associative and commutative, so we
can unambiguously write φ ∗χ ∗ψ and

∏
j∈J φ(j), where φ(j) is an expression

parametrized by j. Consequently, we can also write r ∗Zs ∗Z t and ∗1V∈V̄ p[V].

In the example we just gave, we used a parametrized relation p[V]. We will use this
notation to denote the relation containing the probability distribution over XV.
Likewise, we denote relations containing conditional probability distributions
using p[V |W1,W2, . . .]. These relations comprise most of the atomic components
of relational expressions that we will use from now on.

They are formally defined in terms of an existing probabilistic model with
variables XV, XW1 , et cetera, in conformance with our formal definition of Bayesian

74 Probabilistic inference in a relational representation

p[B|A] =

B A val
false false 0.12
true false 0.88
false true 0.25
true true 0.75

Figure 5.3: The relation p[B|A], with dom(A) = dom(B) = {false, true} and
P(XB=false|XA=false) = 0.12, P(XB=true|XA=false) = 0.88, . . .

networks (section 2.2). In the relational representation, we represent a variable
XV by attribute V, with dom(V) = dom(XV). We define p[V |W1,W2, . . .] as the
embodiment of the probability distribution:

p[V |W1,W2, . . .]
def
= JP(XV = V |XW1 = W1,XW2 = W2, . . .)Kval (R-P)

Note: in the J. . .Kval expression, the attributes that have to be bound to a value are
V, W1, W2; not the probabilistic variables. Also, when substituting a binding for
attribute V, the V in the probabilistic variable name XV is not affected! For an
example of such a relation, see figure 5.3.

The relation p[V,W] for unconditional probabilities is defined analogously.
Most of the times, however, the atomic relations we use are the cpds P(xV |xParents(V))
that make up a Bayesian network. If from the context it is known which Bayesian
network is meant, and what the parents of variable V are, we use the following
shorthand:

cpd[V] def
= p[V |Parents(V)]

The operators introduced in this section make it possible to write probabilistic
statements in terms of relational expressions. For example, the independence of
XA and XB can be written:

P(XA=A,XB=B) = P(XA=A)P(XB=B) for all A ∈ dom(XA), B ∈ dom(XB)
≡ by (R-E) and the definition of J. . .K

JP(XA=A,XB=B)Kval = JP(XA=A)P(XB=B)Kval

≡ by (R-M)

JP(XA=A,XB=B)Kval = JP(XA=A)Kval
∗Z JP(XB=B)Kval

≡ by (R-P)

p[A,B] = p[A] ∗Z p[B]

We will apply this to the inference expression in section 5.3.

5.2.3 Operational semantics

In the previous sections, we have defined a denotational semantics for p[. . .], +
π

and ∗Z in terms of a relational algebra, itself defined in terms of set theory. The

5.2 Relational expressions for inference 75

L r M = return { (t(A), t(B)) 7→ t(val) t ∈ r }
L r ∗Z s M = µ1 ← L r M

µ2 ← L s M
return

{
(a, b, c) 7→ v ∗ v′ ((a, b) 7→ v) ∈ µ1, ((b′, c′) 7→ v′) ∈ µ2, b=b′

}
L +
π−Br M = µ← L r M

return
{

a 7→
∑

b
{

v ((a, b) 7→ v) ∈ µ
}

a ∈ dom(A)
}

L +
π−B (r ∗Z s) M = µ1 ← L r M

µ2 ← L s M

return
{

(a, c) 7→∑
b
{

v ∗ v′ ((a, b) 7→ v) ∈ µ1, ((b′, c′) 7→ v′) ∈ µ2, b=b′
}∣∣∣ a ∈ dom(A), c ∈ dom(C)

}
Figure 5.4: Operational semantics in terms of arrays; example for relations r and s with
schema(r) = {A,B} and schema(s) = {B,C}. The operational semantics L r M of a relation r is a
program that, when evaluated, returns a multidimensional array that can be stored, rep-
resented here by a set with key-value pairs (k1, k2, . . .) 7→ v as elements; the key represents
the position in the array and is not stored. The different ki elements are the values of the
(alphabetically ordered) regular attributes of a tuple in r; v is the value of its val attribute.
To evaluate a composite expression, its subexpressions are evaluated first. Next, the new
array is built; this is described here as a set comprehension, and can be implemented as
a loop or vector operation. The last translation, for expressions of the form +

π(. . . ∗Z . . .), is
optional, and is an optimized variant that does not store the intermediate result. Note:
only relations that contain a tuple for every possible key can be represented as an array.

advantage of relational expressions over numeric expressions is that they can
be straightforwardly assigned an operational semantics—a mapping to machine
instructions—without redundant calculations. By virtue of their operational se-
mantics, two expressions that are denotationally the same, like +

π−B
(
p[A] ∗Z p[B|A]

)
and p[A] ∗Z

+
π−Bp[B|A], can translate to different machine instructions, and have

a different cost in terms of processing time or storage space. This means that an
expression can be optimized by finding an equivalent expression with the lowest
cost.

Although we do not commit to a specific operational semantics in this thesis,
we indicate some general ways of providing one:

• The p[. . .] relations can be represented by arrays. For each tuple, at the
index determined by the regular attributes, the value of the val attribute
is stored. The semantics of the +

π and ∗Z operators are sketched in fig-
ure 5.4. With these semantics, relational expressions are translated into

76 Probabilistic inference in a relational representation

programs similar to those in section 5.1. For example, the expression
+
π−A

(
p[A] ∗Z

+
π−B

(
p[B|A] ∗Z

+
π−Cp[C|B]

))
—which can be directly obtained from∑

a P(a)
∑

b P(b|a)
∑

c P(c|b) by applying (R-M) and (R-S)—roughly
translates into the first example program in that section.

• The relations can be represented like in a conventional database. The oper-
ators p[. . .], +

π and ∗Z are then translated into relational operators according
to their definitions in section 5.2.2. Next, the logical operators from this ex-
pression are translated into physical operators; see any database textbook for
details. The base relations p[. . .] can be stored (on disk or in memory) in a
way that is optimal for these physical operators.

• As a variation on this, specific physical operators can be implemented for ∗Z
and +

π, so the first translation can be skipped.

As a possible improvement to the database semantics, we mention that it is also
possible to use a representation in which tuples with val = 0 are not stored at all.
We will discuss this in detail in section 6.2.1.

5.3 Rewriting the inference expression

Using the tools developed in section 5.2, the inference expression for a Bayesian
network (I-BN)p. 67 is rewritten into a relational expression:

P(xQ̄, xĒ) =
∑

xR̄

∏
V∈V̄ P(xV |xParents(V)) for all xQ̄, xĒ

≡ by (R-P), (R-M), (R-S)

p[Q̄, Ē] =
+
π−R̄

∗1V∈V̄ cpd[V]

However, when performing an inference query, we are not interested in the answer
for all xĒ; we are interested in one particular xĒ value. In our original discussion
of inference queries, this value was bound by the context in which we used the
expression; in the relational representation, it has to be specified in the expression
itself. This is performed by a selection σĒ=xĒ

:

σĒ=xĒ
p[Q̄, Ē] = σĒ=xĒ

+
π−R̄

∗1
V∈V̄

cpd[V]

It is also useful to project out the Ē attributes after this selection. They do not
provide any information anymore, and when the expression is rewritten it simpli-
fies intermediate schemas; as we will show shortly, the selections and projections
regarding the Ē variables can be pushed down to the leaves of the expression.

Note that projecting out the Ē attributes does not reduce the cardinality of
the relation; due to the preceding selection, there is only one possibility for the Ē
values of a tuple. Because of this, the projection can also be written as +

π−Ē, where
each summation is over a group of one tuple. Thus, we apply the operator +

π−Ē

5.3 Rewriting the inference expression 77

to both sides of the above equation. On the right hand side, it can be combined
with the already present +

π−R̄ operator into +
πQ̄, which gives a shorter expression.

On the left hand side, it can also be written as +
πQ̄:

+
πQ̄σĒ=xĒ

p[Q̄, Ē] =
+
πQ̄σĒ=xĒ

∗1
V∈V̄

cpd[V] (I-BN-R)

Now, we can formulate the central thought of this chapter:

Efficient inference in a Bayesian network boils down to rewriting the right
hand side of the above equation into an efficient expression.

Instead of applying this statement to a specific Bayesian network, we can also
apply it one level of abstraction higher: then we are talking about a procedure that
produces an efficient rewriting for any Bayesian network. This is the level on
which the conventional inference procedures operate; however, in the way they
are usually presented, these do not only produce such an expression, but also
execute it.

In chapter 6, we show that variable elimination and junction tree propagation
can easily be interpreted in a way in which they produce a relational expression;
its execution can be deferred to a later stage, possibly after further rewriting.
There are some things to say in favor of such a separation of concerns:

• The resulting expression can be ‘physically’ optimized by choosing effi-
cient join algorithms, appropriate indices and table organizations—concerns
which are presumably too low-level for inference procedures.

• Inference algorithms can be used on parts of a Bayesian network, after which
the resulting expressions are connected. We show this in section 6.1.

But perhaps the largest advantage of viewing inference as ‘merely’ query rewrit-
ing lies not in the use of conventional inference algorithms, but in finding new
optimizations. This can in principle be done without any probabilistic knowl-
edge: any rewriting of the expression is correct as long as it respects the relational
algebra equivalences. Of course, optimizations can also be guided by probabilistic
intuition, and subsequently checked for correctness using relational equivalences.

In the next chapter, we discuss specific rewritings; the remainder of this chapter
contains general remarks about rewriting the right hand side expression. Firstly,
we note that multi-way ∗1 joins usually do not exist as physical operators; to give
the inference expression an operational semantics, they have to be rewritten into
a parenthesized expression of binary ∗Z joins. In query optimization literature,
this is called join ordering, and as we will argue, it is the most challenging task
in inference optimization. After doing this, the +

π−V̄E
, σV̄E=v̄E

and +
π−V̄R

operators
can be pushed into the expression, following relational algebra rewrite rules. The
parenthesized expression can be imagined as a join tree with the root on top; thus,
operators are said to be pushed down the join tree.

78 Probabilistic inference in a relational representation

The rewrite rules relevant to an evidence variable E ∈ Ē are the following:

+
π−EσE=xE (r ∗Z s) =

+
π−EσE=xE r ∗Z s if E ∈ schema(r), E < schema(s)

r ∗Z
+
π−EσE=xE s if E < schema(r), E ∈ schema(s)

+
π−EσE=xE r ∗Z

+
π−EσE=xE s if E ∈ schema(r), E ∈ schema(s)

(D-E)
As noted before, a +

π−E aggregation operator after σE=xE is equivalent to a π−E
operator; with this in mind, the first two cases are basic relational algebra equiv-
alences. The only interesting case is the third one. On the lhs, the ∗Z operator on
joins tuples from r and s that agree on E, but on the rhs this attribute is projected
out earlier; therefore, the rhs ∗Z operator could potentially join tuples that did not
agree on E before it was projected out. However, the selection predicate on both
sides makes sure they do.

In summary, these rewrite rules imply that given any join tree of an inference
expression, the +

π−EσE=xE operators for any evidence variable E ∈ Ē can be pushed
down all the way until the leaves (cpds) that contain E. Applying this for all Ē
variables, the inference expression reads

+
πQ̄σĒ=xĒ

p[Q̄, Ē] =
+
πQ̄

∗1
V∈V̄

cpd
−Ē[V] =

+
π−R̄

∗1
V∈V̄

cpd
−Ē[V]

in which we use the abbreviation

cpd
−Ē[V] def

=
+
π−L̄σL̄=xL̄

cpd[V] where L = Ē ∩ schema(cpd[V]).

We will use this expression as starting point for the conventional inference algo-
rithms in section 5.5; by default, we assume that pushing down these operators
yields a more efficient expression. However, a notable exception to this is dis-
cussed in section 6.1.

Regarding the variables R ∈ R̄, the +
π−R operators can also be pushed down, but

generally not as far as for the Ē variables. The distributivity properties (Σ-D-L)
and (Σ-D-R)p. 19 can be written in a relational representation using (R-S)
and (R-M)p. 72, which provides us with the relevant equivalences:1

+
π−A (r ∗Z s) =

+
π−Ar ∗Z s if A < schema(s) (D-L)

+
π−A (r ∗Z s) = r ∗Z

+
π−As if A < schema(r) (D-R)

When r and s both contain A, in general +
π−A (r ∗Z s) =

+
π−Ar ∗Z

+
π−As does not hold.

For example, consider the case where r = s = JAKval with dom(A) = {1, 2}: the
lhs would evaluate to a single tuple with val = 12 + 22 and the rhs to one with
val = (1 + 2)2.

For an illustration of (D-R), consider the relation in figure 5.2d, which
corresponds to the expression +

π−C
(
JA + BKval

∗Z JA + CKval
)
. Applying (D-R)

1These also hold when the conventional relational operators π and Z are used instead.

5.4 Sum-factor diagrams 79

to this expression says that it equals JA + BKval
∗Z

+
π−C JA + CKval:

A B val
1 2 3339
1 3 4452

=
A B val
1 2 3
1 3 4

∗Z
A val
1 1113

Coming back to the inference expression +
π−R̄

∗1V∈V̄ cpd
−Ē[V], we can again make

the simplifying assumption that it is generally desirable to push down +
π operators

as far as possible, because they always reduce the number of tuples. However,
in making this assumption we ignore, for example, the fact that the cost of +

π−Rr
depends on the physical order of r, that the cost of later operators is affected by
the order that +

π−R produces, and that it may save costs to join +
π−A and +

π−B into
+
π−AB. In this thesis, we do not give any further thought to these considerations.

Thus, for all R ∈ R̄, we push down +
π−R until we encounter a join r ∗Zs for which

R ∈ schema(r) ∧ R ∈ schema(s). The expression tree obtained in that way can also
be formed by adding ‘project onto’ operators to the tree instead of pushing down
‘project away’ operators. For each subtree T:

• Let v(T) be the set of variables in the schemas of the cpd
−Ē[. . .] relations in

T’s leaves (note: these do not contain Ē variables anymore).

• Let w(T) be the union of Q̄ and the variables in the cpd
−Ē[. . .] relations in the

rest of the tree.

• Replace T with +
πv(T)∩w(T).

However, thus far we have neglected the most challenging part: to find the join
ordering. In the next section, we visualize this problem using sum-factor diagrams.

5.4 Sum-factor diagrams

The schemas of the intermediate relations in an inference expression provide im-
portant information about the cost of evaluating the expression. This is especially
true if intermediate relations are stored as multi-dimensional arrays, like in the
operational semantics in figure 5.4; the size of such an array relates exponentially
to the number of dimensions, i.e. the size of the schema. This is the reason why
the heuristics in the conventional inference procedures aim to reduce the size of
the largest intermediate schema (see section 5.5.4). As a tool for visualizing these
intermediate schemas and visually rewriting the expression, we introduce the
sum-factor diagram.2

2We originally introduced sum-factor diagrams[24] for inference expressions in the conventional
notation, i.e. summations over factors; now we use them for their relational representations. They can
also be used to visualize and rewrite a right-deep expression of conventional Z and π operators.

80 Probabilistic inference in a relational representation

+
π ∗Z

p[A]

+
π−B

∗Z

p[B|A]

+
π−C

∗Z

p[C|B]

J1Kval

A
B
C

• •
• •
•

(a) Sum-factor diagram and expression tree for
p[A] ∗Z

+
π−B(p[B|A] ∗Z

+
π−Cp[C|B]).

+
π ∗Z

p[A]

+
π−B,C

∗Z

p[B|A]

+
π ∗Z

p[C|B]

J1Kval

A
B
C

• •
• •
•

(b) Sum-factor diagram and expression tree for
p[A] ∗Z

+
π−B,C(p[B|A] ∗Z p[C|B]). The third row

of the diagram shows that
+
π−C can be pushed

one step to the right, resulting in figure 5.5a.

Figure 5.5: Sum-factor diagram (top) and expression tree (bottom) for two equivalent
expressions. The vertical axis lists the variables in the expression: A,B,C. The horizontal
axis corresponds to the intermediate relations in the expression, as shown by the dotted
lines. The variables in the schema of a ∗Z result are shown in gray; those in the schema
of the left join operand are shown as dots; those removed by a +

π operator are shown as a
vertical bar. For symmetry reasons, +

π operators are added above each ∗Z, and ∗Z J1Kval is
added at the bottom of the tree.

5.4.1 Sum-factor diagrams for right-deep expressions

A sum-factor diagram shows all the intermediate schemas in a right-deep binary
∗Z-tree with +

π operators above the joins. These schemas are arranged from left
to right roughly in the same order as the relations occur in the expression, as is
shown in figure 5.5. The regular attributes of the schemas are arranged on the
vertical axis; the val attribute is not shown, but is present in each schema. To
construct a sum-factor diagram:

1. List the expression’s regular attributes on the vertical axis, in any order.

2. For each base relation (cpd), add a column to the diagram, in the same order
as the relations occur in the textual representation of the expression. Put
a dot in this column for each regular attribute (variable) that occurs in the
relation.

3. For each +
π−{A1,A2,...} operator, add a vertical line for each attribute Ai that is

summed out. In the textual representation, the +
π operator occurs between

two base relations; the vertical lines should be placed between the two
corresponding columns.

4. For each row in the diagram, color a contiguous group of cells: from right to
left, start with the first cell that contains a dot, and end when you encounter

5.4 Sum-factor diagrams 81

a vertical line. If there is none, continue coloring until the left edge of the
diagram.

In sum-factor diagrams, evidence variables are ignored, i.e. omitted from the vertical
axis. As explained above, they can always be projected out immediately, and play
no role in the cost of an expression. If evidence variables are left out, the running
intersection probability (see section 5.5.4) holds for each variable in the diagram,
which can immediately be seen by the fact that there is an uninterrupted row of
gray cells for that variable.

Sum-factor diagrams also provide a visual way to rewrite a right-deep ex-
pression into an equivalent one. Pushing +

π−A down the join tree corresponds to
moving the vertical line in row A to the right; due to (D-R)p. 78, the line cannot
be moved over dots. As we have mentioned before, we usually assume that it is
desirable to push all ∗Z operators as far to the right as possible. For example, in
figure 5.5b, the line in row C can only be moved one step to the right (resulting in
figure 5.5a), but no further.

However, the challenge in rewriting an inference expression lies not in pushing
down +

π operators down a tree, but in determining the right structure (join order)
for that tree—one that allows a lot of +

π operators to be pushed down far, reducing
the size of the intermediate schemas. We first assume trees without +

π operators;
for a right-deep expression, each possible tree corresponds to a permutation of
the base relations. Due to associativity and commutativity of ∗Z, all permutations
are valid. After picking a permutation, the +

π operators can be pushed down.
Thus, the space of right-deep plans for a given inference expression is visu-

alized by all the permutations of the columns of dots, and vertical lines that are
always to the left of the dots.

5.4.2 Extended sum-factor diagrams for bushy expressions

Although not as useful as for right-deep expressions, sum-factor diagrams can
also represent bushy expressions. The horizontal axis of the diagram then (still)
corresponds to the rightmost path through the expression tree; the left operand
of a join on this path, which in a right-deep expression is always a base relation,
can now also be a subtree. The schema of the join result is still shown using gray
cells in the corresponding column; the schema of the subtree is still indicated by
dots; however, the extra variables that occur in intermediate schemas within the
subtree (and have been projected out) are now also shown, using struck out dots.
See figure 5.6. Because the sum-factor diagram does not show the inner structure
of the subtree, a sub-diagram can be drawn for it.

The rule that the vertical lines in the diagram can be pushed to the right until
a dot is met, is now amended with the following clause: if this dot is the only
one of that row, the line can be drawn through the dot, and is pushed into the
sub-diagram.

82 Probabilistic inference in a relational representation

+
π ∗Z

p[A]

+
π−B

∗Z

p[B|A]

+
π ∗Z

+
π−C

∗Z

p[C|B]

J1Kval

+
π−D

∗Z

p[D|A,B]

+
π−E

∗Z

p[E|B,D]

J1Kval

A
B
C
D
E

• •
•
•
•

•
•

•
•

A
B
D
E

•
•
•
•
•
•

Figure 5.6: The extended sum-factor diagram (top) represents the bushy expression
p[A] ∗Z

+
π−B(p[B|A] ∗Z (+

π−D(p[D|A,B] ∗Z
+
π−Ep[E|D,B]) ∗Z

+
π−Cp[C|B])). The dotted column of

this diagram corresponds to the subtree in the dotted rectangle. This subtree can itself be
represented by another sum-factor diagram, shown in the lower left corner.

5.5 Conventional inference procedures

We will review two well-known inference procedures from the AI literature in the
relational framework, which means that we present a view that slightly differs
from the conventional one. In the conventional view, an inference procedure takes
as input a Bayesian network, a set of query variables XQ and a set of evidence
xE, and outputs the probability distribution P(xQ, xE) (or, equivalently, P(xQ |xE),
as we explained above). In our view, the output is a relational algebra expression
evaluating to that distribution. However, this does not affect the essence of the
procedures.

As we will explain in section 5.5.4, the heuristics guiding these inference
procedures try to minimize the dimensionality (the number of attributes) of the
intermediate relations. In chapter 6, we will mostly work with a sparse repre-
sentation of relations, where dimensionality is not important. Nevertheless, we
present these procedures here for a more complete view.

5.5.1 Variable elimination

The procedure known as variable elimination[61] or bucket elimination[18] produces
an inference expression given an elimination order of the R̄ variables. This order,
which is usually derived from the structure of the Bayesian network using heuris-
tics, determines the quality of the produced expression; heuristics for a good
elimination order are discussed in section 5.5.4. In simple cases, it is also possible

5.5 Conventional inference procedures 83

to manually determine a good order.
The procedure (in relational terms) is given by Alg. 2. It processes the R̄

variables in the given order; in each step i it joins all the relations containing Ri,
making its result available for later steps.

As input for the algorithm, we use the cpd relations from (I-BN-R),
with the +

π−ĒσĒ=xĒ
operators already pushed down, as we discussed in section 5.3:

s̄ =
{

cpd
−Ē[V] V ∈ V̄

}
Equivalently, we could have used the set

{
cpd[V] V ∈ V̄

}
as input, and afterward

push the +
π−ĒσĒ=xĒ

operators down.
In a recent article[15], it has been shown that variable elimination can be

improved by afterward pushing down +
π operators where possible.

Input:

• set of relations s̄

• variable elimination order R1, . . . ,Rm on the R̄ variables

Output: an expression e equivalent to π−R̄
∗1

s∈s̄
s

for i = 1..m do
r̄← { s s ∈ s̄, Ri ∈ schema(s) }
s̄← (s̄ \ r̄) ∪ { +

π−Ri

∗1
r∈r̄

r}

end

e← ∗1
s∈s̄

s

Note: where the algorithm specifies a multi-way join, any order can be taken.
Algorithm 2: Variable elimination in a relational representation.

5.5.2 Junction tree propagation

Junction tree propagation[45, 34] is actually a technique to do several inference
queries together—originally σĒ=xĒ

p[V, Ē] for each V ∈ V̄—which reuses interme-
diate results so that it only takes twice as much time as doing a single one of
these queries. In our initial formulation, however, we take one set of query vari-
ables Q̄ as our inference goal. In section 5.5.3, we will show how the procedure
is extended to handle multiple inference queries by sharing common relational
subexpressions.

Like with variable elimination, we use as input the set s̄ of cpds with the
evidence selected and evidence variables projected away. (In most versions of

84 Probabilistic inference in a relational representation

junction tree propagation, the evidence is only taken into account after the tree
has been constructed. This approach has advantages when performing multiple
inference queries with different evidence. However, with fixed evidence, taking this
into account can lead to a better triangulation[45].)

As its second input, the junction tree procedure takes an acyclic hypergraph
cover of the hypergraph (a set of sets) formed by the schemas (regular attributes)
of s̄; we explain what this is in section 5.5.4. Equivalently[57], and most common
in AI literature, one can take the maximal cliques in the triangulation of the primal
graph of this hypergraph; this primal graph can be derived from the Bayesian
network by ‘marrying’ the parents of each node (i.e. adding an edge between
each pair of parents), dropping the direction of the arrows, and in our case also
removing the evidence variables.

In the junction tree procedure, it is the triangulation that determines the quality
of the inference expression and is derived heuristically. Actually, it has a lot in
common with finding a variable elimination order, as we explain in section 5.5.4.

The procedure is shown in Alg. 3. It first constructs a maximal spanning tree
between the hyperedges (cliques), using the size of their intersections as weights.
From this tree (which has sets of attributes as nodes), it takes a node containing
Q̄ as root, and transforms it into an inference expression by:

• placing a +
π operator on each edge

• adding each relation s ∈ s̄ as a child of a node containing its regular attributes

• replacing all clique nodes by ∗1 operators

• adding +
πQ̄ above the root

An example is shown in figure 5.7.

5.5.3 Junction tree propagation for multiple queries

In Alg. 3, whatever Q̄ is chosen—as long Q̄ ⊆ C̄q for some q—the same spanning
tree can be used, the same +

π operators are added, and the same {s, C̄i} edges are
added. The only differences are the location of the root of the tree and the +

πQ̄
operator. As a consequence, there are a lot of common subexpressions in the
inference expressions for different Q̄ variables.

The original junction tree algorithm[45] takes advantage of this. By storing
and reusing the values of subexpressions, it can perform n inference queries (n
is the number of nodes in the spanning tree) in twice the time of one query. The
algorithm picks an arbitrary root of the spanning tree, and traverses each edge
C̄i 7→ C̄ j in the spanning tree twice: first from leaves to root (in the direction of the
arrow), and then from root to leaves. The first time, it saves +

πC̄i∩C̄ j

∗1s on the C̄i side s
in Si j; the second time, it saves +

πC̄i∩C̄ j

∗1s on the C̄ j side s in S ji.

5.5 Conventional inference procedures 85

Input:

• set of relations s̄

• acyclic hypergraph cover of
{

regattr(s) s ∈ s̄
}
:

{C̄1, . . . , C̄n}with C̄i ⊆ Attr

• set of query variables Q̄ and a q for which Q̄ ⊆ C̄q

Output: an expression e equivalent to πQ̄
∗1

s∈s̄
s

M← the complete graph with vertices C̄i
w← the weight function w({C̄i, C̄ j}) = |C̄i ∩ C̄ j|

T← a maximum weight spanning tree of M weighted with w

foreach s ∈ s̄ do
add a node s to T
add an edge {s, C̄i} to T, for some Ci with regattr(s) ⊆ C̄i

end
foreach edge {C̄i, C̄ j} in T do

add a node +
πC̄i∩C̄ j

on the edge (replace the old edge with two edges)
end

e← the expression tree obtained by replacing every Ci with ∗1, taking C̄q
as root
e← +

πQ̄e

Note: where the algorithm specifies a multi-way join, any order can be taken.
Algorithm 3: Junction tree propagation in a relational representation.

86 Probabilistic inference in a relational representation

{A,B,D}

{B,D,E} {B,C}

2 1

1

(a) Weighted complete graph M
over vertices C̄1, C̄2, C̄3, with
maximum weight spanning tree
T (solid).

{A,B,D}

+
πB,D

{B,D,E} +
πB {B,C}

p[A]

p[B|A]

p[C|B]

p[D|A,B]

p[E|B,D]

(b) Relations s̄ and
+
π operators have been

added to T.

∗1
+
πB,D

∗1 +
πB

∗1

p[A]

p[B|A]

p[C|B]

p[D|A,B]

p[E|B,D]

(c) T transformed into expression tree e
(arrows point towards the root).

+
πA

∗1
p[A] p[B|A] p[D|A,B] +

πB,D

∗1
p[E|B,D] +

πB

p[C|B]

(d) Final expression tree e in a more conventional
form, with the root on top. The 1-argument join has
been removed.

Figure 5.7: An example of Alg. 3, with s̄ = {p[A], p[B|A], p[C|B], p[D|A,B], p[E|B,D]}, C̄1 =
{A,B,D}, C̄2 = {B,D,E}, C̄3 = {B,C}, Q̄ = {A} and q = 1.

5.5 Conventional inference procedures 87

The most simple version of this algorithm is presented as Alg. 4 and known
as the Shenoy-Shafer architecture[56]. There is still some redundant work in this
version: to calculate an ‘outgoing’ Sab value it joins the ‘incoming’ values for all
the other edges of Ca. This join expression is different for each outgoing edge, but
there is a lot of overlap. The Hugin architecture[4] described in Alg. 5 improves
on this by storing the join of all incoming values in Pa, and calculating Sab by
dividing out Sba from this. We need a new relational operator r−1 in order to
perform this division:

r−1 = πregattr(r), f 7→valr

f ({t}) =

t(val)−1 if t(val) , 0
0 if t(val) = 0

This ‘pointwise inverse’ operator replaces the val value of every tuple with its
inverse.

Note that the junction tree algorithms given in the last two sections are pro-
vided mainly as a demonstration of their relational algebra formulation; they will
not be used in the remainder of the thesis.

5.5.4 Acyclic hypergraphs

Both the variable elimination and junction tree techniques depend on heuristics
to find a good inference expression. The aim of these heuristics is to minimize the
maximum number of attributes in the schemas of the intermediate relations. The
goal of this section is to give an overview of the graph-theoretic background of
this problem.

In the remainder of this section, we again assume that the input to the problem
consists of the set s̄. Not the actual contents of these relations are relevant, but
only their schemas, so we confine ourselves to

H =
{

regattr(s) s ∈ s̄
}

=
{

regattr(cpd[V]) \ Ē V ∈ V̄
}

This setH can be interpreted as a hypergraph. A hypergraph is a generalization of
a graph, in which edges are generalized to hyperedges. A hyperedge can have any
nonzero number of nodes as endpoints instead of two, and is therefore modeled
by a nonempty set of nodes. It is customary to define a hypergraph by just its set
of hyperedgesH ; the set of nodes is then implicitly defined as

⋃
H . The rank of

a hypergraph is defined as its maximum edge cardinality:

r(H) def
= max

H̄∈H
|H̄|

As we will explain later, the set of schemas of the intermediate relations is required
to be an acyclic hypergraph cover ofH . A hypergraphH ′ is a hypergraph cover ofH

88 Probabilistic inference in a relational representation

Input:

• tree T with nodes {C̄1, . . . , C̄n} ∪ s̄

(produced after the first foreach loop in Algorithm 3)

• query sets Q̄1, . . . , Q̄m with ∀i. ∃ j. Q̄i ⊆ C̄ j

Output: expressions e1, . . . , em with ei equivalent to +
πQ̄i

∗1
s∈s̄

s

take an arbitrary C̄r as root of T and orient the edges towards it
foreach Q̄i do

add an edge Q̄i 7→ C̄ j for some C̄ j containing Q̄i
end

foreach edge C̄i 7→ C̄ j, from leaves to root do

Si j ←
+
πC̄i∩C̄ j

((
∗1for each s 7→ C̄i

s
)
∗Z
∗1h , j, Ch neighbor of C̄i

Shi

)
end
foreach edge C̄i 7→ C̄ j, from root to leaves do

S ji ←
+
πC̄i∩C̄ j

((
∗1for each s 7→ C̄ j

s
)
∗Z
∗1k , i, C̄k neighbor of C̄ j

Skj

)
end
foreach edge Q̄i ⊆ C̄ j do

ei ←
+
πQ̄i

((
∗1for each s 7→ C̄ j

s
)
∗Z
∗1k with C̄k neighbor of C̄ j

Skj

)
end

Note: where the algorithm specifies a multi-way join, any order can be taken.
Algorithm 4: Multi-query junction tree propagation (Shenoy-Shafer).

5.5 Conventional inference procedures 89

Input:

• tree T with nodes {C̄1, . . . , C̄n} ∪ s̄

(produced after the first foreach loop in Algorithm 3)

• query sets Q̄1, . . . , Q̄m with ∀i. ∃ j. Q̄i ⊆ C̄ j

Output: expressions e1, . . . , em with ei equivalent to +
πQ̄i

∗1
s∈s̄

s

take an arbitrary C̄r as root of T and orient the edges towards it
foreach Q̄i do

add an edge Q̄i 7→ C̄ j for some C̄ j containing Q̄i
end

foreach edge C̄i 7→ C̄ j, from leaves to root do
Pi ←

(
∗1for each s 7→ C̄i

s
)
∗Z
∗1h , j, Ch neighbor of C̄i

Shi

Si j ←
+
πC̄i∩C̄ j

Pi

end

Pr ←
(
∗1for each s 7→ C̄r

s
)
∗Z
∗1k with C̄k neighbor of C̄r

Skr

foreach edge C̄i 7→ C̄ j, from root to leaves do
S ji ←

+
πC̄i∩C̄ j

P j
∗Z S−1

i j
Pi ← Pi

∗Z S ji

end
foreach edge Q̄i 7→ C̄ j do

ei ←
+
πQ̄i

P j

end

Note: where the algorithm specifies a multi-way join, any order can be taken.
Algorithm 5: Multi-query junction tree propagation (Hugin).

90 Probabilistic inference in a relational representation

if every edge ofH is contained in some hyperedge ofH ′, i.e.

∀H̄ ∈ H . ∃H̄′ ∈ H ′. H̄ ⊆ H̄′

Acyclicity of a hypergraph is a somewhat more elusive concept than acyclicity of
a graph. One of the possible definitions is as follows: a hypergraph is acyclic iff it
has a construction order that always adds a hyperedgeH j whose intersection with
the already added hyperedges is contained in (at least) one of them:

∀ j > 1. ∃i < j.
(
H̄1 ∪ . . . ∪ H̄ j−1

)
∩ H̄ j ⊆ H̄i

This is known as the running intersection property. A function mapping each H̄ j
(for j > 1) to an appropriate H̄i (as defined above) is called a branching, and can be
thought of as a tree with the H̄i sets as nodes, rooted in H̄1. Given a tree like this,
it is also possible to take any other node as a root; the result will also be a valid
branching forH , albeit with a different construction order[55]. A non-rooted tree
T defining possible branchings forH is also known as a join tree, junction tree or
clique tree for H , and has a desirable property also sometimes referred to as the
running intersection property, or clique intersection property:

For two arbitrary nodes H̄ j and H̄k of T , every node along the path connecting them
contains their intersection H̄ j∩H̄k. Sometimes this property is formulated as follows:
for every node A of the hypergraph H (i.e. an element of one of T ’s nodes), the
subgraph TA induced by the nodes containing A is connected.

The converse is also valid[55, 9]: if a tree T of sets has this property, its sets
form an acyclic hypergraph.

Because in an inference expression, the +
π−R operators can be pushed down

only as long as R occurs in one branch, the intermediate relations containing R
will always form a connected subtree of the inference expression; therefore, the
tree of intermediate schemas will satisfy the running intersection property, and the
schemas themselves form an acyclic hypergraph. Furthermore, this hypergraph
covers the sets in H , because they form the base relations. Therefore, the search
for good inference expressions can be formulated as: Find an acyclic hypergraph
cover C ofH with a small r(C).

There is one problem with this formulation: not every acyclic hypergraph cor-
responds to an inference expression. However, using Alg. 3, we can construct an
inference expression from an acyclic hypergraph; the hypergraph of intermediate
schemas in this expression will be covered by the hypergraph, and hence have an
equal or smaller rank.

The question remains how to find an acyclic hypergraph cover. In the liter-
ature, this question has been studied not in terms of hypergraphs, but in terms
of the representation of a hypergraph called its primal graph. The primal graph
G(H) of hypergraphH has the same nodes, and contains an edge iffH has a hy-
peredge containing both its endpoints. The primal graph representation forgets
some of the structure of a hypergraph: for example, the hypergraphs {{A,B,C}},

5.5 Conventional inference procedures 91

{{A,B,C}, {A,B}} and {{A,B}, {B,C}, {A,C}} all have the same primal graph. As this
example shows, the same primal graph can even represent one hypergraph that is
acyclic (the last one) and one that is not. This is not the case if we confine ourselves
to conformal hypergraphs. A hypergraphH is conformal iff every maximal clique
of G(H) is a hyperedge of H . When we consider only conformal hypergraphs,
their primal graph does determine their acyclicity: a conformal hypergraph is
acyclic iff its primal graph is chordal. A graph is chordal (or triangulated) iff every
cycle of length at least four has a chord, i.e. an edge joining two nonconsecutive
vertices on the cycle. Going from a primal graph G to a conformal hypergraphH
for which G(H) = G is easy: just take the maximal cliques of G as hyperedges.

Thus, to find an acyclic hypergraph cover ofH , one can triangulate G(H), i.e.
add edges until one arrives at a chordal graph CG(H). Then, its maximal cliques
will form the desired acyclic hypergraph cover.

Now, the problem is reduced to finding a good triangulation of G(H): one that
keeps the maximum cliques, and therefore r(C), small. For this, several heuristics
are known[40]. Interestingly, these heuristics can also be used to find a good
variable elimination order: the nodes of every chordal graph can be arranged into
a so-called perfect elimination order, in which the higher-ordered neighbors of each
node form a clique. If the R̄ variables are eliminated in this order, the schema
sizes of the intermediate relations will never be larger than that of the maximum
clique.

The reason that heuristics are used is that the problem of finding an acyclic
hypergraph cover with minimal rank is NP-hard[7]. This minimal rank minus
one is also known as treewidth, and a tree of sets covering the edges of G and
satisfying the running intersection property is also known as a tree decomposition
of G[50].

92 Probabilistic inference in a relational representation

Chapter 6

Relational inference for sensor
models

In this chapter, we apply the theory from chapter 5 to the dynamic Bayesian
networks presented in chapters 2 and 3. Using the relational framework, we
develop general inference expressions for these sensor data models that are more
efficient than those produced by conventional inference procedures. The expres-
sions derived by the conventional procedures are suboptimal for sensor data for
two reasons:

1. In sensor data processing, the same calculations are made over and over.
It is better to structure the calculations so that a large part of intermediate
results can be shared.

2. The conventional procedures optimize under the implicit assumption that
probability distributions are dense, i.e. nonzero for a large part of their
domain. In the sensor data models we use, this is not the case: they contain
a lot of zeros, and when they are scaled up, it is primarily this number
of zeros that increases. Omitting these zeros from the relations (a sparse
representation) is therefore crucial, and leads to totally different cost functions
and optimization decisions.

Also, the conventional algorithms do not exploit the opportunity to factorize the
OR-distribution, without which the inference time of the MSHMM-NOR model
(section 3.4) grows exponentially w.r.t. the interval length D. Methods to pre-
process a Bayesian network (before applying a conventional inference procedure)
that factorize the OR-distribution in order to avoid this are known; we show that
these methods can also be derived without any reference to probability theory,
using only logic and relational algebra. Moreover, thanks to the relational repre-
sentation, we can adapt the resulting expressions so they make optimal use of the
sparse representation.

94 Relational inference for sensor models

6.1 Exploiting dynamic Bayesian network structure

Compared to a generic Bayesian network, a dynamic Bayesian network has a
special structure (section 2.3.3): it repeats for every t, and the parents of a variable
at time t are either at time t−1 or at time t as well. This structure can be exploited
for query optimization in two ways.

The first, discussed in section 6.1.1, saves ’query optimization time’: the same
join tree is built for each t, and these are connected to each other. The basic idea is
not new, e.g. see [51, section 15.5] and especially [47, section 3.4], but our presen-
tation in relational terms is. Building on these results, the second optimization
(section 6.1.2) saves ’run time’ by taking advantage of shared subexpressions in
the inference expression, and is novel to the best of our knowledge.

Both optimizations are shown for a generic dynamic Bayesian network, con-
sisting of the variables V̄t = V1

t , . . . ,V
n
t for each slice t, which is instantiated for T

slices. At each time t, we observe values xĒt
for the variables Ēt ⊂ V̄t. For simplic-

ity of exposition, we assume for now that Q̄ = Īu: the query variables consist of
the interface between u and u+1 (recall from section 2.3.3 that Īu consists of those
variables Vi

u that have a child in V̄u+1). Thus, the inference expression reads:

+
πQ̄σĒ1..T=xĒ1..T

p[Q̄, Ē1..T] =
+
πĪu
σĒ1..T=xĒ1..T

∗1
t=0..T

cpd[V1
t] ∗Z . . . ∗Z cpd[Vn

t]

The two optimizations consist of specific approaches to rewrite this expression.

6.1.1 Repeating structure in the inference expression

We partly rewrite the above inference expression using two recursive expressions
ft and bt (which the reader familiar with the literature, e.g. [51, chapter 15], may
recognize as forward and backward messages):

+
πQ̄σĒ1..T=xĒ1..T

p[Q̄, Ē1..T] = fu ∗Z bu+1

ft
def
=

+
πĪt
σĒt=xĒt

(
cpd[V1

t] ∗Z . . . ∗Z cpd[Vn
t] ∗Z ft−1

)
bt

def
=

+
πĪt−1

σĒt=xĒt

(
cpd[V1

t] ∗Z . . . ∗Z cpd[Vn
t] ∗Z bt+1

)
f0

def
= J1Kval

bT+1
def
= J1Kval (R-DBN)

Thus, we insert some parentheses in the expression. Also, per (D-E)p. 78,
we push down σĒt=xĒt

operators. Thirdly, in the ft expressions, we apply +
πĪt

in
accordance with the procedure outlined in section 5.3: the interface variables Īt are
the only variables from ft that also occur somewhere in the surrounding join tree.
A similar argument applies to Īt−1 in bt. See figure 6.1 for a sum-factor diagram of
this partially rewritten expression.

6.1 Exploiting dynamic Bayesian network structure 95

ĪT

V̄T

cpd[Vi
T]

bT

ĪT−1

V̄T−1

cpd[Vi
T−1]

bT−1

... . .
.

Īu+2

V̄u+2

cpd[Vi
u+2]

bu+2

Īu+1

V̄u+1

cpd[Vi
u+1]

bu+1

Īu

V̄1..u

fu

••
••••

Īu

V̄u

fu

cpd[Vi
u]

Īu−1

V̄u−1

fu−1

cpd[Vi
u−1]

...
. . .

Ī2

V̄2

f2
cpd[Vi

2]

Ī1

V̄1

f1
cpd[Vi

1]

Figure 6.1: Sum-factor diagram for fu
∗Z bu+1, the inference expression for a dynamic

Bayesian network (see text). For the leftmost relation fu, the sum-factor diagram is given
in the dotted inset. As the expressions are only partially specified, so are the diagrams:
each box labeled cpd[Vi

t] represents the yet unspecified join tree for the relations cpd[V1
t]

through cpd[Vn
t], which together contain the variables V̄t ∪ Īt−1. These cpds are the same

for each t, so the same join tree (and diagram columns) can be formed for each box in the
topmost diagram. This also goes for the inset diagram, except that the cpds for t=1 are
different.

96 Relational inference for sensor models

The ft and bt expressions are small inference expressions themselves, except
for one difference: they contain ft−1 and bt+1 instead of a cpd. However, at least
for the conventional inference procedures, there is nothing that prevents treating
them in the same way: ft−1 is just a relation with regattr(ft−1) = Īt−1, and bt+1 has
regattr(bt+1) = Īt. The evidence for this small inference expression consists of xĒt

,
and the query variables are Īt (for ft) or Īt−1 (for bt).

Although the contents of ft and bt differ for each t, their schema is the same,
and for the conventional procedures the schema is all that matters. Therefore, to
optimize the inference expression for the whole dynamic Bayesian network, the
following approach can be taken:

1. Optimize ft using an inference procedure of choice.

2. Optimize f1 using an inference procedure of choice (recall from section 2.3.3
that the cpds are different for t = 1).

3. Optimize bt using an inference procedure of choice.

4. Connect the resulting expressions by recursively replacing the references to
ft−1 and bt+1 by their optimized expressions.

In comparison to constructing a global join tree, this approach of chaining together
local join trees can save a lot on query optimization time. Also, the repetitive
structure created by the recursion shows that inference for a dynamic Bayesian
network is in principle linear in T. Moreover, the inference can also be done in a
streaming way; the join tree can be grown every time a batch of sensor readings
arrives.

6.1.2 Sharing subexpressions

The structure of a dynamic Bayesian network also provides opportunities for
saving query ‘run time’. Continuing the rewriting process of the previous section,
we show how to rewrite bt such that subexpressions are shared among the different
bt instances; the case for ft is analogous. Note that the contents of all base relations
cpd[Vi

t] in bt are the same for each t; only the contents of relation bt+1 differ for
each t. Different for each t as well is the selection predicate in σĒt=xĒt

.
Hence, parts of a join tree for bt that only consist of cpd[Vi

t] relations and do
not contain σ operators can be reused. The extreme case, with maximal sharing,
would therefore be to join all the cpd[Vi

t] relations before applying a σ operator or
joining with bt+1:

bt =
+
πĪt−1

(
+
π−Ēt

σĒt=xĒt
b′t

∗Z bt+1

)
b′t = ρVi

T−1 7→Vi
t−1,V

i
T 7→Vi

t
b′T

b′T =
+
πĪT−1∪ĪT∪ĒT

(
cpd[V1

T] ∗Z . . . ∗Z cpd[Vn
T]

)

6.2 Sparseness 97

The shared relation, whose contents are calculated only once, is b′T; it is reused as b′t,
with the same contents, only with the attribute names changed to the current t.
As explained in section 5.3, we can sum out all the attributes that do not occur
anywhere else in the join tree, which leaves Īt−1, Īt and Ēt. The b′T expression is
not in a tree form yet; again, this can be done by an inference procedure of choice
(with no evidence variables, and ĪT−1 ∪ ĪT ∪ ĒT as query variables).

One may—justly—wonder whether the above rewriting of bt is actually an
optimization. The shared b′T relation runs the risk of becoming very large, because
the +

π−A operators that project away Īt and Ēt are not pushed down (nor are those
that project away Īt−1, but this also holds for other bt optimizations). This large
relation can take a long time to create, consume a lot of storage space, and even
be slow to query (i.e. to apply the σĒt=xĒt

operator on).
So, these costs have to be compared to the cost of calculating a separate bt

relation for each t. If T is large (so the time for the upfront calculation of b′T can
be neglected), and storage space is no issue, the question becomes which is faster:
(a) the look-up in the b′T relation which has |ĪT−1 ∪ ĪT ∪ ĒT | attributes (dimensions),
or (b) calculating cpd

−Ē[Vi
t] relations, joining them, and applying +

π operators.
The answer to this question depends on the model; in section 6.2, we show that

a theoretical analysis for the MSHMM model turns out in favor of the case with
shared subexpressions. A further investigation of this question is left for future
research. In particular, we would like to point out that we have only discussed the
case with maximal sharing above, and that the sharing of smaller subexpressions
can also be considered.

As we will show in the next section, the probabilistic semantics of the shared
relation (in this case b′T) can be of use in the efficiency analysis. For completeness,
we derive them here:

+
πĪT−1∪ĪT∪ĒT

(
cpd[V1

T] ∗Z . . . ∗Z cpd[Vn
T]

)
= by (C-S)p. 25

+
πĪT−1∪ĪT∪ĒT

p[V̄T | ĪT−1]
= by (M)p. 15 and the definition of conditional probability

p[ĪT, ĒT | ĪT−1]

6.2 Sparseness

The MSHMM (section 2.4.2) is an example of a probabilistic model of which the
cpds largely consist of zeros. In the array representation used in figure 5.4 (as
well as in most explanations of inference algorithms), these zeros take up storage
space as well as processing time. For a small number of zeros, this is acceptable,
because the array representation induces little overhead. For larger numbers of
zeros, however, it can be more efficient to use a sparse representation of probability

98 Relational inference for sensor models

distributions, in which these zero-valued probabilities are neither stored nor used
in calculations.

By excluding zero probabilities from a relation, the cardinality of this relation
is no longer related to the number of attributes (i.e. the number of probabilistic
variables in the expression). As we will show, this can have a profound effect on
optimization decisions; we give a theoretic scalability analysis for the MSHMM,
in which we assume that the processing time for certain operations scales linearly
or logarithmically with the cardinality of the involved relations.

6.2.1 Sparse representation

The only thing we have to change in our relational algebra framework to sparsely
represent probability distributions (and other expressions) is the way in which
we embody a numeric expression. Before, this was defined in (R-E)p. 71:

q
φ
y

val
def
=

q
φ = val

y

For the sparse representation, this is changed into:

q
φ
y

val
def
=

q
φ = val ∧ val , 0

y
(S-R)

A very important property of this new representation is that (R-M) and
(R-S)p. 73 are still valid. We prove this informally, starting with (R-S):

+
π−A

q
φ
y

val =
q∑

a∈dom(A) φ[a/A]
y

val

On the left hand side, a tuple t is included in the relation iff
q
φ

y
val has at least

one tuple with the same values on t’s regular attributes (and some a for attribute
A); i.e. there is some a for which φ , 0. On the right hand side, however, a tuple
is included in the relation iff the sum of all outcomes of φ for all a ∈ dom(A) is
nonzero. Clearly, the latter implies the former: if the sum is nonzero, there must
be at least one nonzero term. The converse also holds if it can be assumed that φ
cannot take negative values, and for probabilities this is the case.

We continue with (R-M):
q
φ
y

val
∗Z JψKval =

q
φ ∗ ψ

y
val

The left hand side consists of bindings for which φ , 0 and ψ , 0; the right hand
side of bindings for which φ ∗ ψ , 0. These conditions are equivalent.

6.2.2 Exploitation of sparseness in MSHMM

We will now analyze the scalability of the MSHMM; we compare (a) a conven-
tional inference approach using an array representation, (b) the same inference
expression using a sparse representation, and (c) an inference expression that uses

6.2 Sparseness 99

a shared subexpression (in a sparse representation). We scale up the model by
expanding the detection area, i.e. installing more scanners; the granularity of the
discrete location variable (i.e. the number of m2 per xt value) is kept fixed, as well
as the density of the scanners (the number of scanners per m2). In other words,
the K and L parameters of the model are jointly increased (see figure 2.5); we will
analyze the effect this has on the inference time of the three approaches.

In all three approaches, we use the rewriting (R-DBN)p. 94 of a dynamic
Bayesian network into the recursive fu and bu parts. For the analysis, we restrict
ourselves to one ft expression, and assume that the total inference time is given
by multiplication with T, a constant factor. For the MSHMM, the ft factor to be
optimized is:

ft =
+
πXtσS1..K

t =s1..K
t

(
cpd[Xt] ∗Z cpd[S1

t] ∗Z . . . ∗Z cpd[SK
t] ∗Z ft−1

)
Applying variable elimination gives the following result, as there is only one
variable (Xt−1) to eliminate, which occurs in ft−1 and cpd[Xt].

ft =
+
π−Xt−1

(
ft−1

∗Z cpd[Xt]
)
∗Z

+
π−S1

t
σS1

t =s1
t
cpd[S1

t] ∗Z . . . ∗Z
+
π−SK

t
σSK

t =s1
t
cpd[SK

t]

No matter where we add the parentheses that turn this expression into a binary
tree, the inference time will scale quadratically when the array representation is
used: all the probabilities P(sc

t |xt) will be taken into account, where c ranges over
1..K and xt ranges over 1..L.

Most of these sensor probabilities are irrelevant, because most locations xt are
out of the question anyway: estimates of the location at earlier times, combined
with the knowledge that the mobile device can only move with a certain speed,
will give these a zero probability. This probability distribution based on earlier
sensor readings is represented by the relation ft−1: due to (J-S-BN)p. 20,
it holds that

ft−1 =
+
πXt−1σS̄1..t−1=s̄1..t−1

p[Xt−1, S̄1..t−1]

The number of Xt−1 locations that have a nonzero joint probability with the sensor
input up to t−1 depends on when the last y result is received. For example, if one
scanner produced y at t−1, this number is 9: see the gray area in figure 2.5. When
it has been longer ago, this number grows larger, because the mobile device could
have moved further in the mean time. However, this number does not depend on
K or L, so we will take it into account as a constant factor for the inference time.
In the rest of this analysis, we will assume it to be 9.

Now, if we use the same optimized ft expression as above, but with a sparse
representation, ft−1 contains 9 tuples. After joining with cpd[Xt] and projecting
out Xt−1, the resulting relation will contain 13 tuples: all the locations reachable
from this area in one step. If there is an index on Xt−1 for relation cpd[Xt], this
join can be performed in O(log L) time. For the other part of the ft expression, it

100 Relational inference for sensor models

matters how we put the parentheses. Two options are

ft =
+
π−Xt−1

(
ft+1

∗Z cpd[Xt]
)
∗Z
((

+
π−S1

t
σS1

t =s1
t
cpd[S1

t] ∗Z . . .
)
∗Z

+
π−SK

t
σSK

t =s1
t
cpd[SK

t]
)

ft =
(((

+
π−Xt−1

(
ft+1

∗Z cpd[Xt]
)
∗Z

+
π−S1

t
σS1

t =s1
t
cpd[S1

t]
)
∗Z . . .

)
∗Z

+
π−SK

t
σSK

t =s1
t
cpd[SK

t]
)

The former will still take O(KL) time: almost all scans Sc
t return a n, and the

relation +
π−Sc

t
σSc

t =ncpd[Sc
t] contains L tuples. These relations are joined in c order,

and all these join results will contain L tuples until a σSc
t =y is encountered for a

certain c. This can be assumed to happen, on average, for c = K/2.1

The latter option is better: as the initial relation contains 13 tuples, all join
results will also contain a maximum of 13 tuples. Still, K joins are performed, so
the inference time will scale as O(K log L). In fact, it can be argued that a lot of
redundant work is performed: the result sc

t of each sensor is taken into account
and contributes to the processing time, although it is known beforehand that only
three results of nearby scanners can be positive. This is true for every imaginable
rewriting of ft.

If we use the subexpression sharing approach from section 6.1.2, we can avoid
this work. We rewrite:

ft =
+
π−Xt−1

(
ft+1

∗Z cpd[Xt]
)
∗Z

+
π−S̄t

σS̄t=s̄t
f ′t

f ′t = ρSc
T 7→Sc

t ,XT 7→Xt f ′T
f ′T = cpd[S1

T] ∗Z . . . ∗Z cpd[SK
T]

The f ′T relation is equal to the joint sensor model p[S̄t |Xt], from which we can
deduce its size: for each location xt, 3 scanners can produce y or n while the others
all produce n, which yields 23 = 8 possible (xt, s̄t) combinations with nonzero
probability. Hence, the relation contains 8L tuples; so its storage size scales
linearly when we increase the detection area.

If a clever index on S̄t is used, the selection S̄t = s̄t can be performed in log K
time if at least one scan is y. If all scans are n, it is better to postpone the selection,
and first join on Xt (which takes log L time if there is an index on Xt). In conclusion,
when the upfront calculation is not taken into account, the inference time can scale
sublinearly when using a sparse representation.

6.3 Two techniques for Noisy-OR

The relation that represents the cpd of an n-way logical OR has n + 1 regular
attributes. When n is large, such relations become a bottlenecks for inference; in
the MSHMM-NOR, this happens when the time granularity is increased. In this
section, we analyze the problem, and present two methods that solve the problem

1A possible remedy would be to dynamically choose a join tree for ft depending on the values of s̄t:
reorder the σsc

t
cpd[Sc

t] relations such that one with sc
t = y is at the bottom.

6.3 Two techniques for Noisy-OR 101

X1 X2 · · · Xn

Y n-way OR

(a) Unoptimized n-way logical OR in a
Bayesian network.

X1 X2 · · · Xn

C0 C1 C2 · · · Cn

OR OR OR

(b) Sequential decomposition. C0 is set to false,
i.e. P(C0 = false) = 1, and Y = Cn.

X1 X2 · · · Xn

C1 C2 · · · Cn Cn+1

OR OR OR

(c) Reverse sequential decomposition; Cn+1 is
set to false, i.e. P(Cn+1 = false) = 1, and Y = C1.

Figure 6.2: Sequential decomposition of the n-way OR variable Y into multiple binary OR
variables C1, . . . ,Cn, as a transformation of the Bayesian network.

by factorizing the cpd into smaller relations. The factorizations themselves stem
from existing literature, but we show that both can be derived in relational terms,
in a similar fashion and without probabilistic knowledge. Also, we point out that
the sparse representation can again be crucial for scalability.

6.3.1 The problematic relation

Throughout this section we assume that the stochastic variable Y is defined as the
logical OR of the variables X1, . . . ,Xn. We use the Iverson notation again; recall
from section 3.2 that 〈true〉 def

= 1 and 〈false〉 def
= 0. We show the definition of the cpd

for Y, first as a conventional probabilistic definition, and then as a relation:

P(y|x1, . . . , xn) = 〈y = x1 ∨ . . . ∨ xn〉

cpd[Y] = p[Y |X1, . . . ,Xn] = J〈Y = X1 ∨ . . . ∨ Xn〉Kval

There are two problems with this relation. Firstly, its cardinality becomes expo-
nentially large as n is increased. It has 2n+1 tuples in an array representation, and
2n in a sparse one: given certain values X1 though Xn—for which 2n combinations
are possible—one Y value is correct (this tuple has val = 1) and one is incorrect
(the tuple has val = 0, and is not included in the sparse representation).

Secondly, as a consequence, intermediate relations resulting from a join with
this relation become large as well. As a running example, we use the Bayesian
network fragment shown in figure 6.3a, where n = 8 and the Xi variables are

102 Relational inference for sensor models

X1 X2 · · · X8

Y 8-way OR

(a) Bayesian network fragment (a
part of a larger model in which the
Xi chain continues to the left and
right).

X0
X1
X2
X3
X4
X5
X6
X7
X8

•
•

•
•

•
•

•
•

•
•
•
•
•
•
•
•

•
•

•
•

•
•

•
•

(b) Sum-factor diagram of the optimal inference expression
for the variables in this fragment, with Q̄ = X0 and Ē = Y.
The cpd[Y] relation is placed in the middle, and cpd[X1]
through cpd[Xn] are arranged around it from left to right.

Figure 6.3: Running example: a logical OR in a larger network with a chain.

connected in a chain. This fragment has approximately the same structure as the
intervals in the MSHMM-NOR model, but is simplified for explanatory purpose.
Consider the inference query with Q̄ = {X0} and Ē = {Y} (which may occur as part
of a backward pass in a larger model where the X-chain extends further to the left
and right):

+
πX0σY=y

(
cpd[Y] ∗Z cpd[X1] ∗Z . . . cpd[Xn]

)
An optimized right-deep join tree for this query is shown as a sum-factor diagram
in figure 6.3b. Note that Y is omitted on the vertical axis because it is an evidence
variable. Placing the cpd[Y] relation in the middle minimizes the number of
intermediate attributes, but there is no way to avoid intermediate relations of up
to (n/2) + 1 attributes.

In this way, the cpd[Y] relation will always become a bottleneck in inference
when n gets large. However, these problems can be solved by factoring cpd[Y]
into smaller relations. In the remainder of this section, we review two such fac-
torizations known from the AI literature, again in relational terms. We show
that the relational representation helps to demonstrate the correctness of the fac-
torizations, and that the sparse physical representation is useful in the case that
the ‘output’ variable is observed as false (which occurs a lot in our sensor data
models): then processing the logical OR need not produce any extra tuples at all.

6.3.2 Sequential decomposition

The first factorization is known as sequential decomposition[31]. In the Bayesian
network under consideration, it replaces the probabilistic variable Y with a se-
quence of variables C0, . . . ,Cn whose cpds all represent a binary logical OR. They
are strung together so that Ci represents the cumulative OR value of X1 through
Xi (see figure 6.2b). The first variable C0 is fixed at false; the last variable Cn is

6.3 Two techniques for Noisy-OR 103

equal to Y. Thus, the Ci variables have the following cpd:

cpd[Ci] = p[Ci |Ci−1,Xi] = J〈Ci = Ci−1 ∨ Xi〉Kval

cpd[C0] = p[C0] = J〈C0 = false〉Kval

Using the relational representation, we can prove that this factorization, namely
cpd[Y] = ρCn 7→Y

+
π−{C0,...,Cn−1}

∗10≤i≤n cpd[Ci], is valid. We first need two auxiliary
theorems about representing booleans by 0 and 1, namely that ∗Z functions as ∧
and +

π (under a certain condition) as ∃. The first theorem reads:

J〈θ〉Kval
∗Z J〈κ〉Kval = J〈θ〉 ∗ 〈κ〉Kval = J〈θ ∧ κ〉Kval

The validity of the first equation follows from (R-M)p. 72, and that of the
second one by comparing the truth table of ∧ with the multiplication table of 0
and 1. The second theorem reads:

+
π−A J〈θ〉Kval = J

∑
a〈θ[a/A]〉Kval = J〈∃a.θ[a/A]〉Kval if A is a function

The first equation is valid due to (R-S)p. 73. In the middle relation, the
expression

∑
a〈θ[a/A]〉 yields, given a binding of the schema(θ) \ {A} attributes, the

number of bindings for A that make θ true. If θ implies that A is a function of a
subset of schema(θ) \ {A}, this is at most one: if there exists such a binding it yields
1, otherwise it yields 0. Therefore, the expression equals 〈∃a.θ[a/A]〉.

Now, the relational factorization introduced above follows from the predicate
logic factorization of an n-way OR into n binary ORs:

cpd[Y]
= definition of cpd[Y]

J〈Y = X1 ∨ . . . ∨ Xn〉Kval

= renaming an attribute

ρCn 7→Y J〈Cn = X1 ∨ . . . ∨ Xn〉Kval

= predicate logic

ρCn 7→Y J〈∃c0, . . . , cn−1.(Cn = cn−1 ∨ Xn) ∧ . . . ∧ (c1 = c0 ∨ X1〉 ∧ (c0 = false)Kval

= second auxiliary theorem

ρCn 7→Y
+
π−{C0,...,Cn−1} J〈(Cn = Cn−1 ∨ Xn) ∧ . . . ∧ (C1 = C0 ∨ X1) ∧ (C0 = false)〉Kval

= first auxiliary theorem

ρCn 7→Y
+
π−{C0,...,Cn−1}

(
J〈Cn = Cn−1∨Xn〉Kval

∗Z . . . ∗Z J〈C1 = C0∨X1〉Kval
∗Z J〈C0 = false〉Kval

)
= definition of cpd[Ci]

ρCn 7→Y
+
π−{C0,...,Cn−1}

∗10≤i≤n cpd[Ci]

If cpd[Y] in the running example is substituted with this factorization, the inter-
mediate relations after optimization can be kept small: by interleaving the cpd[Ci]

104 Relational inference for sensor models

X0
C0
X1
C1
X2
C2
X3
C3
X4
C4
X5
C5
X6
C6
X7
C7
X8

•
•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•
•
•

(a) Sequential decomposition.

X0
X1
X2
X3
X4
X5
X6
X7
X8
Y′ •

• •
•

•

• •
•

•

• •
•

•

• •
•

•

• •
•

•

• •
•

•

• •
•

•
• •
•

•
(b) Dı́ez-Galán decomposition.

Figure 6.4: Sum-factor diagrams of the optimized inference expressions for the running
example (figure 6.3a), where cpd[Y] is replaced by a factorization into smaller relations.
The maximum number of attributes in the intermediate relations is not dependent on n
anymore.

relations between the cpd[Xi] and cpd[Xi+1] relations in the chain, the three rela-
tions that contain attribute Xi are kept close to each other, so this attribute can be
projected out as soon as possible. This optimization is written as follows:

+
πX0σY=y

(
cpd[Y] ∗Z cpd[X1] ∗Z . . . ∗Z cpd[Xn]

)
=

+
π−C0

(
cpd[C0] ∗Z b1

)
where bi =

+
π−Xi

(
cpd[Xi] ∗Z

+
π−Ci

(
cpd[Ci] ∗Z bi+1

))
bn =

+
π−Xn

(
cpd[Xn] ∗Z

+
π−CnσCn=ycpd[Cn]

)
Note that we have eliminated the renaming operator by directly using Cn =
y as the selection predicate. This optimized expression is shown in the sum-
factor diagram in figure 6.4a. The intermediate relations now have a maximum
dimensionality of 3; therefore, inference time is no longer exponential in n, but
only linear.

If the sparse representation is used, and y = false, the above optimization is even
more efficient. The relation cpd[Cn] at the end of the expression contains only
one tuple for which the selection predicate Cn = false holds: the one for which
Cn, Cn−1 and Xn are all false (if the sparse representation is not used, the 3 tuples
with other values for Cn and Xn−1 are also included, with val = 0). A little higher
up in the expression tree, each tuple in bn will therefore also have Cn−1 = false.
It will only join with the one tuple from cpd[Cn−1] for which Cn−1 is false. This
process continues upwards: hence, joining with cpd[Ci] relations will never cause
an increase in tuples.

Besides this, the sparse representation provides more opportunities for opti-

6.3 Two techniques for Noisy-OR 105

mization. First, note that an expression of the form
q
〈φ〉

y
val contains only tuples

with val = 1: those for which φ is true. This means that it can also be written asq
φ

y
Z J1Kval:

q
〈φ〉

y
val

= by (S-R)p. 98

q
〈φ〉 = val ∧ val > 0

y

= q
〈φ〉 = 1 ∧ val = 1

y

= q
φ ∧ val = 1

y

= q
φ
y
Z Jval = 1K

= by (S-R)p. 98

q
φ
y
Z J1Kval

In the expression to be optimized, all cpd[Ci] can be rewritten like this. Afterward,
we apply the rewrite rule

(r Z J1Kval)
∗Z s = r Z s

(where val < schema(r), val ∈ schema(s)). Thus, the expression is rewritten as

+
πX0σY=y

(
cpd[Y] ∗Z cpd[X1] ∗Z . . . ∗Z cpd[Xn]

)
=

+
π−C0

(
JC0 = falseK Z b1

)
where bi =

+
π−Xi

(
cpd[Xi] ∗Z

+
π−Ci (JCi = Ci−1 ∨ XiK Z bi+1)

)
bn =

+
π−Xn

(
cpd[Xn] Z +

π−CnσCn=y JCn = Cn−1 ∨ XnK
)

If the appropriate join operatorZθ is available, this can subsequently be rewritten
into:

+
πX0σY=y

(
cpd[Y] ∗Z cpd[X1] ∗Z . . . ∗Z cpd[Xn]

)
=

+
π−C0

(
JC0 = falseK Z b1

)
where bi =

+
π−Xi

(
cpd[Xi] ∗Z

+
π−Ci

(
JCi−1K ZCi=Ci−1∨Xi bi+1

))
bn =

+
π−Xn

(
cpd[Xn] Zy=Cn−1∨Xn JCn−1K

)
One final note about all optimizations presented thus far: in the running example,
we assumed a backwards pass over the Xn variables. Due to the direction of
the sequential decomposition, the evidence variable Y corresponded to Cn, and
therefore the evidence selection σCn=y could be inserted at the bottom of the
expression. If we are performing a forward pass instead (see section 6.1), we can

106 Relational inference for sensor models

better use a reverse sequential decomposition (figure 6.2c):

cpd[Y] = ρC1 7→Y
+
π−{C2,...,Cn+1}

∗1
0≤i≤n

cpd[Ci]

cpd[Ci] = p[Ci |Ci+1,Xi] = J〈Ci = Ci+1 ∨ Xi〉Kval

cpd[Cn+1] = p[Cn+1] = J〈Cn+1 = false〉Kval

This way, when we build a forward chain, i.e. with the X1 variable at the bottom
and Xn on top, we can insert σC1=y at the bottom again, and profit from the
reduction of tuples throughout the whole expression when y = false and the
representation is sparse.

6.3.3 The Dı́ez-Galán Noisy-MAX decomposition

A second factorization for the OR cpd has been proposed by Dı́ez and Galán[20],
and is similar to a factorization we have used earlier[24]. However, it is more
general; it factorizes the multi-way MAX function, of which the multi-way OR is
a special case when false is represented by 0, and true by 1. In this section, we show
that this factorization can be derived, and therefore easily verified, relationally.

The cpd P(y|x1, . . . , xn) now represents the MAX function with input variables
X1..n and output variable Y, all with domain 0..m (of which the logical OR is an
instance with m = 1):

cpd[Y] = p[Y |X1, . . . ,Xn] = J〈y = MAX(X1, . . . ,Xn)〉Kval

The MAX function can be characterized as follows:

y = MAX(x1, . . . , xn) ≡

 ∧
i=1..n

xi ≤ y

 ∧ ¬
 ∧

i=1..n

xi ≤ y − 1

The rhs is of the form p ∧ ¬q, for which q→ p holds; indeed, if all xi are less than
y−1, they are also less than y. We can rewrite its numeric representation:

〈p ∧ ¬q〉
=
〈p〉 ∗ 〈¬q〉

=
〈p〉 ∗ (1 − 〈q〉)

=
〈p〉 − 〈p〉 ∗ 〈q〉

=
〈p〉 − 〈p ∧ q〉

= because q→ p

〈p〉 − 〈q〉

6.3 Two techniques for Noisy-OR 107

We use this result in the following derivation, in which we rewrite the MAX
function into a sum-of-products form that can be represented relationally:

J〈y = MAX(X1, . . . ,Xn)〉Kval

=

J〈(
∧

i=1..n Xi ≤ Y) ∧ ¬ (
∧

i=1..n Xi ≤ Y − 1)〉Kval

= just derived

J〈
∧

i=1..n Xi ≤ Y〉 − 〈
∧

i=1..n Xi ≤ Y − 1〉Kval

=

J(
∏

i=1..n〈Xi ≤ Y〉) −
∏

i=1..n〈Xi ≤ Y − 1〉Kval

= see belowu

v
∑

0≤y′≤m

∆(Y, y′) ∗
∏

i=1..n〈Xi ≤ y′〉

}

~

val

= by (R-S) and (R-M)p. 72

+
π−Y′

(
J∆(Y,Y′)Kval

∗Z
∗11≤i≤n J〈Xi ≤ Y′〉Kval

)
In the equality marked ‘see below’, we replace a subtraction of two similar terms
(differing only in Y vs. Y−1) by a summation. For this purpose, an auxiliary
function ∆(y, y′) is used:

∆(y, y′) =

1 if y′ = y
−1 if y′ = y − 1
0 otherwise

In the summation, y′ can start at 0, as the term 〈Xi ≤ −1〉 that y′= − 1 would
contribute always equals 0 (because Xi has domain 0..m).

Again, this factorization rewrites an n-dimensional relation into a join of low-
dimensional relations, which can be interleaved between the cpd[Xi] relations in
the inference expression for our running example:

+
πX0σY=y

(
cpd[Y] ∗Z cpd[X1] ∗Z . . . ∗Z cpd[Xn]

)
=

+
π−Y′b1

where bi =
+
π−Xi

(
J〈Xi ≤ Y′〉Kval

∗Z
(
cpd[Xi] ∗Z bi+1

))
bn =

+
π−Xn

(
J〈Xn ≤ Y′〉Kval

∗Z
(
cpd[Xn] ∗Z

+
π−YσY=y J∆(Y,Y′)Kval

))
The sum-factor diagram for this expression is shown in figure 6.4b. Like with the
sequential decomposition, the number of attributes in the intermediate relations
is no longer dependent on n.

Using the sparse representation for this expression brings the same advantage
in the y = 0 case as it did for the sequential decomposition expression in the
y = false case. The relation σY=0 J∆(Y,Y′)Kval contains only one tuple, with Y = 0,

108 Relational inference for sensor models

Y′ = 0, and val = 1; relations higher up in the tree will therefore only have tuples
with Y′ = 0, and join with one tuple from JXi ≤ Y′Kval.

Also, the optimizations for the sparse representation can be applied again.
The

q
〈φ〉

y
val

∗Z s occurrences are replaced with
q
φ

y
Z s:

+
πX0σY=y

(
cpd[Y] ∗Z cpd[X1] ∗Z . . . ∗Z cpd[Xn]

)
=

+
π−Y′b1

where bi =
+
π−Xi

(
JXi ≤ Y′K Z

(
cpd[Xi] ∗Z bi+1

))
bn =

+
π−Xn

(
JXn ≤ Y′K Z

(
cpd[Xn] ∗Z

+
π−YσY=y J∆(Y,Y′)Kval

))
In the expressions JXi ≤ Y′K Z (s ∗Z t), the Xi and Y′ attributes already occur in
schema(s ∗Z t), so they can be rewritten into σXi≤Y′ (s ∗Z t), and if the ∗Zθ operator is
available even into s ∗ZXi≤Y′ t:

+
πX0σY=y

(
cpd[Y] ∗Z cpd[X1] ∗Z . . . ∗Z cpd[Xn]

)
=

+
π−Y′b1

where bi =
+
π−Xi

(
cpd[Xi] ∗ZXi≤Y′ bi+1

)
bn =

+
π−Xn

(
cpd[Xn] ∗ZXn≤Y′

+
π−YσY=y J∆(Y,Y′)Kval

)
A rewrite rule that is often useful in combination with the Dı́ez-Galán decompo-
sition is the following:

+
π−X

(
JX ≤ YK Z

q
φ
y

val

)
=

t∑
x≤Y

φ[x/X]

|

val

Although this does not apply to our running example, it is often the case that
after the factorization, cpd[Xi] and JXi ≤ Y′K are the only relations in the inference
expression that contain Xi as an attribute, so +

π−Xi can be pushed down to the join
of these relations. Applying the rewrite rule then yields:

+
π−Xi

(
JXi ≤ Y′K Z cpd[Xi]

)
= definition

+
π−Xi

(
JXi ≤ Y′K Z JP(Xi | . . .)Kval

)
= rewrite rule

q∑
xi≤Y′ P(xi | . . .)

y
val

Thus, instead of the normal cpd, a cumulative cpd for Xi is used. For each value
of the parents of Xi, these cumulative probabilities can be calculated using m
additions. This calculation is made only once; in return, all the +

π−Xi operators are
removed from the inference expression.

A caveat for the Dı́ez-Galán decomposition is that it produces tuples for which
val < 0. Therefore, the condition that enables the use of (R-S) (see sec-
tion 6.2.1) in the sparse representation does not hold anymore: the left-hand side

6.4 Analysis of MSHMM-NOR inference 109

may contain tuples with val = 0. Of course, if this becomes a problem, one can
always filter these tuples out: the equation

σval,0
+
π−A

q
φ
y

val =
q∑

a∈dom(A) φ[a/A]
y

val

does hold (for the sparse representation).

6.4 Analysis of MSHMM-NOR inference

For the MSHMM-NOR (section 3.4), the optimizations from the previous chapters
can be combined. We apply the recursive query plan for Bayesian networks, the
Dı́ez-Galán decomposition, and the sharing of the sparse MSHMM sensor model.
We start with the recursive query plan (R-DBN)p. 94, and consider only
the backwards message bt here for simplicity.

bt =
+
πĪt−1

bt+1
∗Z cpd[Xt] ∗Z

 ∗1
1≤c≤K

θc
−t (mod P)<D

cpd[Sc
t]

 ∗Z
∗1

θc−t (mod P)=0

σAc
t =ac

t
cpd[Ac

t]

Note the restrictions on c under the ∗1 operators; they are there because in the
MSHMM-NOR model, the variables Sc

t and Ac
t exist only for certain combinations

of c and t. Also, because the MSHMM-NOR is not strictly a dynamic Bayesian
network, we have adopted a more general definition of the interface variables Īt;
these are now the V̄i variables, for all i ≤ t, that have any V j variable as a child,
for t < j. This is to make sure that the bt relation, which somewhere contains a
cpd[Ac

j] relation with an Sc
i variable in its schema, does not project out this variable

(this should happen higher in the join tree, namely at bi).
As discussed in section 6.3.1, this expression suffers from a high-dimensional

cpd[Ac
t] relation and other intermediate relations. Applying the Dı́ez-Galán opti-

mization leads to the following relation:

bt =
+
πĪt−1

bt+1
∗Z cpd[Xt] ∗Z

 ∗1
1≤c≤K

θc
−t (mod P)<D

cpd[Sc
t] Z JSc

t ≤ Ac
?K

 ∗Z

∗1
θc−t (mod P)=0

+
π−Ac

t
σAc

t =ac
t
J∆(Ac

t ,A
c
?)Kval

In this expression, the places of the Y and Y′ variables are taken by Ac

t and Ac
?,

respectively. We consider Ac
? to be a part of Īt as long as t contains an Sc

t variable
but no Ac

t variable. Note: the Sc
t , Ac

t and Ac
? variables have domain {n, y} which is

ordered n < y.

110 Relational inference for sensor models

Next, we apply the sharing optimization:

bt =
+
πĪt−1

bt+1
∗Z cpd[Xt] ∗Z

p[S̄t |Xt] Z 1
θc−t (mod P)<D

JSc
t ≤ Ac

?K

 ∗Z

∗1
θc−t (mod P)=0

+
π−Ac

t
σAc

t =ac
t
J∆(Ac

t ,A
c
?)Kval

where p[S̄t |Xt] is the joint sensor model, as explained in section 6.2.2; however, a
difference for the MSHMM-NOR is that there are a couple of different joint sensor
models, because a different combination of Sc

t variables exists for different t. As
we have explained earlier, the number of tuples in p[S̄t |Xt] is linear in dom(Xt)
due to the joint sparseness of the sensor models, and thus poses no scalability
problems. However, the join of all

q
Sc

t ≤ Ac
?

y
in the above expression forms a

problem: it contains 3n tuples, where n is the number of existing Sc
t variables for t.

To remedy this problem, the Sc
t ≤ Ac

? restrictions can be moved to a join with bt+1:

bt =
+
πĪt−1

cpd[Xt] ∗Z p[S̄t |Xt] ∗ZS̄t≤Ā?

bt+1
∗Z

∗1
θc−t (mod P)=0

+
π−Ac

t
σAc

t =ac
t
J∆(Ac

t ,A
c
?)Kval

The reason why this is better is that, just like in the MSHMM there is a limited
number of sensors for which Sc

t can be y at one time, in the MSHMM-NOR there
is always a limited number of sensors with Ac

i = y. For the far majority of sensors,
Ac

i = n (in a large model). This produces only one tuple in σAc
t =ac

t

q
∆(Ac

t ,A
c
?)

y
val,

for which Ac
? = n as well; later, tuples with Ac

? = n will only join with tuples for
which Sc

? = n.
As the two final optimizations, we decide on a join order (where we avoid

joining the large relations cpd[Xt] and p[S̄t |Xt] first), and push the +
π−S̄t

operator
down the joins:

bt =
+
πĪt−1

cpd[Xt] ∗Z
+
π−S̄t

p[S̄t |Xt] ∗ZS̄t≤Ā?

bt+1
∗Z

∗1
θc−t (mod P)=0

+
π−Ac

t
σAc

t =ac
t
J∆(Ac

t ,A
c
?)Kval

This leaves us with recursive bt step which can be calculated in O(3n log(K + L))
time, where n is the number of simultaneous scans (i.e. whose intervals have an
overlap at t) for which Ac

i = y.

Chapter 7

Conclusions and future work

In this thesis, we have researched how probabilistic models can play a role in ful-
filling the new requirements that sensing environments set for data management.
In particular, we analyze the specific problems for sensor data in achieving the
traditional data management goal of modularity (chapter 1), and argue that these
can be solved by using probabilistic models. Then, given the fact that probabilis-
tic models are used, we investigate the efficiency of query processing over these
models.

This chapter gives a summary of our results in this research, and points to-
wards interesting future directions.

7.1 Main results

Q1 How can probabilistic models be defined in a modular way?

The simple answer to this question is: by using Bayesian networks. This result
is neither novel nor surprising; studying a number of articles and textbooks on
artificial intelligence leaves the impression that the AI community is quite aware
of this. However, this is not yet the case in the data management community,
and although this modularity can be considered as the main feature of Bayesian
networks, it is not often given this credit—with the quote at the start of chapter 2
as a notable exception.

In that chapter, we give an analysis of what kind of modularity is important
for sensor data models—the ability to add, remove or replace sensors—and why
Bayesian networks provide this modularity. These answers can be found in
section 2.3. Furthermore, we make an effort to give this modularity a formal
definition. Essential components in the argumentation are the formal separation
of the cV function associated with variable V in a Bayesian network and its cpd, and
the theorem (J-S-BN)p. 20 which states that the well-known factorization

112 Conclusions and future work

of the joint probability holds for any subset of variables closed under Parents.
Again, this may not come as a surprise for AI researchers, but we have never seen
it formulated so explicitly, and we believe it deserves to be.

Modularity means as few dependencies as possible between different parts
of a system. In chapter 3, we propose several generic models that remove the
dependency arising from the synchronization of sensor observations in basic
dynamic Bayesian networks. The most interesting of these models, the MSHMM-
NOR (section 3.4), accommodates sensor readings that pertain to an interval rather
than a point in time. It combines this feature with efficient learning and inference
characteristics (the latter are discussed in chapter 6).

Q2 How can a transition model be constructed in a modular way?

In chapter 4, we have rephrased this question in the following way: can the
transition frequencies in a global state space be derived from the transition fre-
quencies within local clusters of states? Next, we give a mathematical analysis
of this question using what we call the uncoiled inter-cluster transition graph. The
problem can be described as a set of linear equations, which we prove has exactly
one solution if this graph has no cycles; if it does, the solution space is spanned
by the fundamental cycles.

Furthermore, the solution space is bounded by inequalities. We have per-
formed an experiment, using clusters of states with a hexagonal topology and
random transition frequencies, to investigate the effect of these limits: we picked
a random vector from the solution space and compared it with the original fre-
quencies. One of the results of this experiment is that the median error of these
frequencies lies around 4% with clusters of diameter 15.

Q3 How can probabilistic inference be performed efficiently in a situation where
the number of sensors and the domains of variables are scaled up?

This question arises mainly from our Bluetooth localization scenario and the ac-
companying probabilistic models MSHMM and MSHMM-NOR. For the localiza-
tion scenarios, the conditional probability distributions in these models possess
an inherent sparsity: for any given location, it is (a) only possible to move to a fixed
number of other locations, and (b) only possible to be sensed by a fixed number
of sensors. These fixed numbers do not change when the model is scaled up. In
this context, scaling up means that the observed area is enlarged simultaneously
with the number of sensors.

This sparsity is present in the conditional probability distributions, not in the
graph structure of the Bayesian network. Therefore, it is not taken into account
by the heuristics for classic inference algorithms like variable elimination and
junction tree propagation, which assume that intermediate tables of probabilities
are encoded as arrays, and try to minimize the dimensionality of these arrays.
However, if a sparse representation is used, dimensionality becomes irrelevant as

7.2 Future directions 113

an optimization criterion. We show this by presenting optimized inference pro-
cedures for the localization scenario, which scale sublinearly where conventional
approaches scale quadratically. We do this for both the MSHMM and MSHMM-
NOR models (in sections 6.2 and 6.4, respectively).

We derive these optimizations by the novel method of formulating them in
relational algebra, which is introduced in chapter 5. This method goes far beyond
the specific case of our localization models, and can be used for inference optimiza-
tion on any Bayesian network. It decouples the optimization from probabilistic
theory and formulates it in terms that are well-known to database researchers,
thereby providing opportunities for synergistic research.

7.2 Future directions

Building on the results in this thesis, we can point to some promising future
research directions and questions.

Sharing over multiple time slices. In section 6.1.2, we discussed pre-calculating
the relation p[Īt, Ēt | Īt−1] for one time slice of a dynamic Bayesian network,
and sharing these results throughout the recursive inference calculation. An
open question we already posed there is: when is it cheaper to pre-calculate
and share this whole relation, and when is it cheaper to share only a part?
If the balance turns out in favor for the former, then we can also look in
the other direction; it may be even cheaper to share the joined relations of
several time slices. For example, for three time slices, the shared relation
would be p[Īt, Ēt, Ēt−1, Ēt−2 | Īt−3]. Of course, the space taken by this relation
will usually grow exponentially with the number of time slices; looking
things up in such a relation will probably only be useful as long as it fits
inside a fast cache.

Hybrid array/sparse representation. Although a sparse representation is crucial
for large domains with many nonzeros, it is outperformed by a (conven-
tional) array representation on small domains. This raises the question
whether there is a middle road. Probability distributions are not randomly
sparse, but consist of clusters of nonzeros; the idea is to store the position
and size of a cluster, and use an array for its data.

Aggregation queries. Probabilistic inference queries will often be combined with
some form of aggregation: although a localization domain model may be
specified at a granularity of a m2, it could be that users are only interested
in the probability distribution at a granularity that is courser by an order of
magnitude. A similar argument holds for aggregation in the time dimen-
sion. How can we optimize the data processing with these queries in mind?
And can we expect other complex queries that combine probabilistic and
deterministic aspects?

114 Conclusions and future work

Approximate inference. How can approximate inference methods such as parti-
cle filters and Markov Chain Monte Carlo be integrated with the relational
algebra formulation?

Evaluation framework. How do we set up an evaluation framework for sensor
data processing? What kind of queries are allowed and expected? In
particular: do we accommodate continuous queries, historical queries, or
both? How do we evaluate non-exact results? Given the often real-time
nature of sensor data queries, does latency play a role? See also section 2.6.

Using the probabilistic model as statistics for optimization. The probabilistic
models do not only provide the data on which to operate, but also useful
metadata for optimization: they tell which sensor readings are to be expected
in certain situations. This could be worthwhile to exploit, for example
by prefetching/precomputing relevant parts of the model, or by building
dedicated indices.

Automatic optimization. In this thesis, we have manually optimized the infer-
ence queries for the MSHMM and MSHMM-NOR models with sparse con-
ditional probability distributions. Ideally, this would be the job of a query
optimizer.

7.3 Integration with streaming management

While this thesis focuses on dealing with the uncertainty in sensor data, we
would finally like to point out another aspect in which sensor data poses novel
requirements to data management: the temporal dimension. On the data supply
side, sensors will flood the data management system with new information at an
unprecedented rate; on the demand side, applications need to be kept up to date,
causing a steady (lower bandwidth, higher quality) stream outwards.

More than before, applications will continuously be interested in the same
query on the new data. This may take the form of monitoring (continuously
update a traffic info widget on the user’s desktop) or alerting (only contacting
the application when a train service is delayed). Also, applications might be
interested in trends rather than only current data (How is the traffic compared to
yesterday? How fast is that rain cloud moving this way?).

These new temporal requirements will change how data management systems
deal with new and old data. A naive update approach, in which a new reading
from a sensor overwrites an old one, is not workable for several reasons:

• With such an approach, there is no way to detect dynamics or trends in the
sensor data, or to search sensor history.

• If an application is polling the data management system, it might miss im-
portant information. However this can be solved by registering a continuous

7.3 Integration with streaming management 115

query, in which case the data management system pushes the new results to
the application when new data becomes available.

• In order to keep several tables consistent during the processing of a query,
updates may have to wait until query processing is finished. This causes
delay and planning overhead, and can become a problem when the update
rate is high.

However, if sensor data is to be appended rather than overwritten, the question
becomes when to throw it away (or: aggregate it, compress it, move it to a
slower storage system); this will perhaps become the responsibility of the data
management system rather than that of the applications. Also, query languages
will have to include the temporal aspect. Two notable approaches are using sliding
windows on sensor streams[6, 43] (typically for monitoring queries), or using some
kind of (regular expression like) event language[2, 12] (typically for alert queries).

A question that is still very much open is how to integrate these approaches
with the probabilistic models presented in this thesis.

116 Conclusions and future work

Bibliography

[1] Serge Abiteboul, Rakesh Agrawal, Philip A. Bernstein, Michael J. Carey,
Stefano Ceri, Bruce W. Croft, David J. DeWitt, Michael J. Franklin, Hector
Garcia-Molina, Dieter Gawlick, Jim Gray, Laura M. Haas, Alon Y. Halevy,
Joseph M. Hellerstein, Yannis E. Ioannidis, Martin L. Kersten, Michael J.
Pazzani, Michael Lesk, David Maier, Jeffrey F. Naughton, Hans-Jörg Schek,
Timos K. Sellis, Avi Silberschatz, Michael Stonebraker, Richard T. Snodgrass,
Jeffrey D. Ullman, Gerhard Weikum, Jennifer Widom, and Stanley B. Zdonik.
The Lowell database research self-assessment. Commun. ACM, 48(5):111–118,
2005.

[2] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Effi-
cient pattern matching over event streams. In Jason Tsong-Li Wang, editor,
SIGMOD Conference, pages 147–160. ACM, 2008.

[3] Philip E. Agre. Changing places: Contexts of awareness in computing.
Human-Computer Interaction, 16(2, 3, 4):177–192, 2001.

[4] Stig K. Andersen, Kristian G. Olesen, Finn Verner Jensen, and Frank Jensen.
Hugin - a shell for building bayesian belief universes for expert systems. In
IJCAI, pages 1080–1085, 1989.

[5] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. Fast
and simple relational processing of uncertain data. In ICDE, pages 983–992.
IEEE, 2008.

[6] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL Continuous
Query Language: Semantic foundations and query execution. VLDB Journal,
15(2):121–142, June 2006.

[7] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of
finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–
284, 1987.

[8] Magdalena Balazinska, Amol Deshpande, Michael J. Franklin, Phillip B. Gib-
bons, Jim Gray, Mark Hansen, Michael Liebhold, Suman Nath, Alexander S.

118 BIBLIOGRAPHY

Szalay, and Vincent Tao. Data management in the worldwide sensor web.
IEEE Pervasive Computing, 6(2):30–40, 2007.

[9] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the
desirability of acyclic database schemes. J. ACM, 30(3):479–513, 1983.

[10] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom.
Uldbs: Databases with uncertainty and lineage. In Umeshwar Dayal, Kyu-
Young Whang, David B. Lomet, Gustavo Alonso, G.M. Lohman, Martin L.
Kersten, Sang Kyun Cha, and Young-Kuk Kim, editors, VLDB, pages 953–
964. ACM, 2006.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[12] Jan Carlson and Björn Lisper. An event detection algebra for reactive systems.
In Giorgio C. Buttazzo, editor, EMSOFT 2004, September 27-29, 2004, Pisa,
Italy, Fourth ACM International Conference On Embedded Software, Proceedings,
pages 147–154. ACM, 2004.

[13] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing
and OLAP technology. SIGMOD Record, 26(1):65–74, 1997.

[14] Guanling Chen, Ming Li, and David Kotz. Design and implementation of
a large-scale context fusion network. In MobiQuitous, pages 246–255. IEEE
Computer Society, 2004.

[15] Héctor Corrada Bravo and Raghu Ramakrishnan. Optimizing MPF queries:
decision support and probabilistic inference. In SIGMOD Conference, pages
701–712, 2007.

[16] A. de Keijzer. Management of Uncertain Data - towards unattended integration.
PhD thesis, Univ. of Twente, Enschede, February 2008.

[17] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence
and causation. Computational Intelligence, 5(3):142–150, 1989.

[18] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artif.
Intell., 113(1-2):41–85, 1999.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[20] Francisco Javier Dı́ez and Severino F. Galán. Efficient computation for the
Noisy MAX. Int. J. Intell. Syst., 18(2):165–177, 2003.

BIBLIOGRAPHY 119

[21] Pedro Domingos and Michael J. Pazzani. On the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103–130,
1997.

[22] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J-C. Burgelman.
Scenarios for ambient intelligence in 2010. Technical report, IST Advisory
Group (ISTAG), 2004.

[23] Sander Evers, Maarten Fokkinga, and Peter M. G. Apers. Composable
Markov building blocks. In H. Prade and V. S. Subrahmanian, editors, Pro-
ceedings of the 1st International Conference on Scalable Uncertainty Management
(SUM 2007), Washington DC, USA, volume 4772 of Lecture Notes in Computer
Science, pages 131–142, Berlin, October 2007. Springer Verlag.

[24] Sander Evers, Maarten Fokkinga, and Peter M. G. Apers. Probabilistic pro-
cessing of interval-valued sensor data. In Proceedings of the 5th Workshop on
Data Management for Sensor Networks, in conjunction with VLDB, pages 42–48,
August 2008.

[25] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters,
27(8):861–874, 2006.

[26] Jr. Forney. The Viterbi algorithm. Proceedings of the IEEE, 61(3):268–278,
March 1973.

[27] Michael J. Franklin. Challenges in ubiquitous data management. In Informat-
ics: 10 years back, 10 years ahead, volume 2000 of LNCS, pages 24–33, London,
UK, 2001. Springer-Verlag.

[28] Dan Geiger, Thomas Verma, and Judea Pearl. Identifying independence in
Bayesian networks. Networks, 20(5):507–534, 1990.

[29] N. Gershenfeld, R. Krikorian, and D. Cohen. The Internet of Things. Scientific
American, 291(4):76–81, 2004.

[30] David L. Hall and James Llinas. An introduction to multisensor data fusion.
Proc. of the IEEE, 85(1):6–23, January 1997.

[31] D. Heckerman and J. S. Breese. Causal independence for probability assess-
ment and inference using Bayesian networks. IEEE Transactions on Systems,
Man and Cybernetics, Part A, 26(6):826–831, Nov 1996.

[32] Joseph M. Hellerstein, Wei Hong, and Samuel R. Madden. The sensor spec-
trum: technology, trends, and requirements. SIGMOD Record, 32(4):22–27,
2003.

120 BIBLIOGRAPHY

[33] Jeffrey Hightower and Gaetano Borriello. Particle filters for location esti-
mation in ubiquitous computing: A case study. In Nigel Davies, Elizabeth
Mynatt, and Itiro Siio, editors, UbiComp 2004: Ubiquitous Computing: 6th
International Conference, pages 88–106. Springer-Verlag Heidelberg, 2004.

[34] Cecil Huang and Adnan Darwiche. Inference in belief networks: A proce-
dural guide. Int. J. Approx. Reasoning, 15(3):225–263, 1996.

[35] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jen-
nifer Widom. A pipelined framework for online cleaning of sensor data
streams. In Ling Liu, Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang,
editors, ICDE, page 140. IEEE Computer Society, 2006.

[36] Michael I. Jordan, editor. Learning in graphical models. MIT Press, Cambridge,
MA, USA, 1999.

[37] Marek Junghans and Hans-Joachim Jentschel. Qualification of traffic data by
Bayesian network data fusion. In 10th International Conference on Information
Fusion, 2007, July 2007.

[38] Bhargav Kanagal and Amol Deshpande. Online filtering, smoothing and
probabilistic modeling of streaming data. In Proceedings of the 24th Inter-
national Conference on Data Engineering (ICDE2008), pages 1160–1169, April
2008.

[39] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93,
1938.

[40] Uffe Kjærulff. Triangulation of graphs — algorithms giving small total state
space. Technical Report R-90-09, Dept. of Mathematics and Computer Sci-
ence, Aalborg University, 1990.

[41] Uffe Kjærulff. A computational scheme for reasoning in dynamic probabilis-
tic networks. In Didier Dubois and Michael P. Wellman, editors, UAI, pages
121–129. Morgan Kaufmann, 1992.

[42] Donald E. Knuth. Two notes on notation. American Mathematical Monthly,
99(5):403–422, May 1992.

[43] Jürgen Krämer and Bernhard Seeger. Semantics and implementation of con-
tinuous sliding window queries over data streams. ACM Trans. Database
Syst., 34(1), 2009.

[44] S. Kullback and RA Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, pages 79–86, 1951.

[45] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. Journal of the
Royal Statistical Society. Series B, 50(2):157–224, 1988.

BIBLIOGRAPHY 121

[46] Thomas M. Mitchell. Machine Learning. McGraw-Hill Higher Education,
1997.

[47] Kevin P. Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, University of California, Berkeley, 2002.

[48] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, USA, 1988.

[49] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[50] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. J. Algorithms, 7(3):309–322, 1986.

[51] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2nd edition, 2004.

[52] Mahadev Satyanarayanan. Pervasive computing: Vision and challenges.
IEEE Personal Communications, 8(4):10–17, 2001.

[53] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Exploiting shared cor-
relations in probabilistic databases. In Proceedings of the 34th International
Conference on Very Large Data Bases (VLDB2008), August 24-28, 2008, Auck-
land, New Zealand, pages 809–820, August 2008.

[54] Ross D. Shachter. Probabilistic inference and influence diagrams. Operations
Research, 36(4):589–604, 1988.

[55] Glenn Shafer and Prakash P. Shenoy. Local computation in hypertrees. Tech-
nical Report 201, University of Kansas, July 1991.

[56] Prakash P. Shenoy and Glenn Shafer. Axioms for probability and belief-
function proagation. In Ross D. Shachter, Tod S. Levitt, Laveen N. Kanal,
and John F. Lemmer, editors, UAI, pages 169–198. North-Holland, 1988.

[57] Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566–579, 1984.

[58] Jiřı́ Vomlel. Exploiting functional dependence in Bayesian network inference.
In Adnan Darwiche and Nir Friedman, editors, UAI, pages 528–535. Morgan
Kaufmann, 2002.

[59] Daisy Zhe Wang, Eirinaios Michelakis, Minos Garofalakis, and Joseph M.
Hellerstein. BayesStore: Managing large, uncertain data repositories with

122 BIBLIOGRAPHY

probabilistic graphical models. In Proceedings of the 34th International Confer-
ence on Very Large Data Bases (VL DB2008), August 24-28, 2008, Auckland, New
Zealand, pages 340–351, August 2008.

[60] Mark Weiser. The computer for the 21st century. Scientific American, 265(3):94–
104, 1991.

[61] Nevin Lianwen Zhang and David Poole. Exploiting causal independence in
Bayesian network inference. J. Artif. Intell. Res. (JAIR), 5:301–328, 1996.

SIKS Dissertation Series

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations within the Lan-
guage/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling; Automated modeling of Quality Change of
Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven Specification of
Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism for Discrete
Reallocation.

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie; een procesbenadering en actor-
perspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)

124 SIKS Dissertation Series

Knowledge-based Query Formulation in Information Retrieval.
2000-6 Rogier van Eijk (UU)

Programming Languages for Agent Communication
2000-7 Niels Peek (UU)

Decision-theoretic Planning of Clinical Patient Management
2000-8 Veerle Coupé (EUR)

Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI)

Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI)

Image Database Management System Design Considerations, Algorithms and Architec-
ture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models, Views of Packages
as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice BRAHMS: a multiagent modeling and simulation
language for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of Mental Models in Business Systems Design

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments inhabited by Privacy-
concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative E-Commerce Ideas

125

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and Verifying Multi-
Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction between
medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to Digital Media Ware-
houses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

126 SIKS Dissertation Series

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar abstract denken,
vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale politiële gegeven-
suitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM)
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)

127

Adaptive Game AI
2005-07 Flavius Frasincar (TUE)

Hypermedia Presentation Generation for Semantic Web Information Systems
2005-08 Richard Vdovjak (TUE)

A Model-driven Approach for Building Distributed Ontology-based Web Applications
2005-09 Jeen Broekstra (VU)

Storage, Querying and Inferencing for Semantic Web Languages
2005-10 Anders Bouwer (UVA)

Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environ-
ments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets prag-
matics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by Exploiting Application
Semantics

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools for Graphical Service
Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

128 SIKS Dissertation Series

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment, and the
arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements
Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlović (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media reposi-
tories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework for
Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Nataša Jovanović (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)

129

Modeling of Change in Multi-Agent Organizations
2007-09 David Mobach (VU)

Agent-Based Mediated Service Negotiation
2007-10 Huib Aldewereld (UU)

Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols
2007-11 Natalia Stash (TUE)

Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia Sys-
tem

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A Rational Approach to Dynamic
Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in Institutions and Organizations
for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential adoption and usage of
broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramı́rez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

2008-01 Katalin Boer-Sorbán (EUR)
Agent-Based Simulation of Financial Markets: A modular, continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware information systems
from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence
Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

130 SIKS Dissertation Series

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

2008-10 Wouter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the
Markov Decision Process Framework in First-Order Domains.

2008-16 Henriëtte van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)1

From Document to Entity Retrieval: Improving Precision and Performance of Focused
Text Search

2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie van
elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven.

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-
signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and
Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and Querying Me-
dia Content

2008-31 Loes Braun (UM)

1Thanks a lot for the LATEX source of this list!

131

Pro-Active Medical Information Retrieval
2008-32 Trung H. Bui (UT)

Toward Affective Dialogue Management using Partially Observable Markov Decision
Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks - Based on Knowledge,
Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies (making ontologies work
in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Elec-
tronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

132 SIKS Dissertation Series

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VU)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through Relational Mapping

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management: An Incremental Method Engineering Ap-
proach

Summary

The increasing availability of cheap, small, low-power sensor hardware and the
ubiquity of wired and wireless networks have led to the prediction that ‘sensing
environments’ will emerge in the near future. The sensors in these environments
collect detailed information about the situation people are in, which is used to
enhance information-processing applications that are present on their mobile and
‘ambient’ devices.

Mediating between the sensor data supply and demand sides poses new re-
quirements to data management. In this thesis, we identify and investigate the
challenge of dealing with the uncertainty inherent in sensor data processing. This
uncertainty arises due to many causes: measurement noise, missing data because
of sensor or network failure, the inherent ‘semantic gap’ between the data that
is measured and the information one is interested in, and the integration of data
from different sensors. Probabilistic models deal with these uncertainties in the
well-understood, comprehensive and modular framework of probability theory,
and are therefore often used in processing sensor data.

In particular, Bayesian networks form a good candidate for modeling sensor data
in a flexible environment, because of their comprehensiveness and modularity.
We provide extensive technical argumentation for this claim. As a demonstration
case, we define a discrete Bayesian network for location tracking using Bluetooth
transceivers.

In order to scale up sensor models, efficient probabilistic inference is crucial. We
observe that the conventional inference methods for Bayesian networks, which
have mainly been developed in the medical and hardware diagnosis domain, do
not scale well for our demonstration case. We propose several optimizations,
making it possible to jointly scale up the number of locations and sensors in
sublinear time, and to scale up the time resolution in linear time.

More important than these optimizations themselves is the way by which we
arrive at them; we define a straightforward theoretical framework for translating
an inference query into relational algebra. This allows the query to be analyzed
and optimized using insights and techniques from the database community; for
example, using cost metrics based on cardinality rather than dimensionality, which
is common in conventional inference algorithms.

134 Summary

A fairly orthogonal research question investigates the possibility of collecting
the transition statistics (needed for acquiring the parameters of a probabilistic
model) in a local, clustered fashion, in which transitions between states of different
clusters cannot be directly observed. We show that this problem can be written
as a constrained system of linear equations, for which we describe a specialized
solution method.

Samenvatting

Door zowel de stijgende beschikbaarheid van goedkope, kleine en energiezuinige
sensoren als de alomtegenwoordigheid van (draadloze) netwerken verwacht men
in de nabije toekomst ‘gevoelige omgevingen’. De sensoren in deze omgevingen
verzamelen gedetailleerde informatie over de situatie waarin personen zich bevin-
den, die gebruikt wordt om informatieverwerkende toepassingen op mobiele en
‘ambient’ apparaten te verbeteren.

Het bij elkaar brengen van vraag en aanbod van sensor-data stelt nieuwe eisen
aan data management. In dit proefschrift wordt de inherente onzekerheid in de ver-
werking van sensor data geı̈dentificeerd en geanalyseerd. Deze onzekerheid kent
vele oorzaken: ruis in metingen, ontbrekende gegevens door uitval van sensoren
of netwerkverbindingen, het ‘semantische gat’ tussen meetgegevens en relevante
informatie, en het samenvoegen van gegevens uit meerdere bronnen. Probabilis-
tische modellen beschrijven deze onzekerheden d.m.v. het modulaire, bewezen
raamwerk van de kansrekening, en worden vaak toegepast voor het verwerken
van sensor-data.

In het bijzonder zijn Bayesiaanse netwerken een goede kandidaat voor het mod-
elleren van sensor-data in een flexibele omgeving vanwege hun veelomvattend-
heid en modulariteit; we voorzien deze bewering van een uitgebreide technis-
che onderbouwing. Als voorbeeldcasus wordt een discreet Bayesiaans netwerk
gedefinieerd voor localisatie d.m.v. Bluetooth-ontvangers.

Voor schaalvergroting van sensormodellen is efficiënte probabilistische infer-
entie van cruciaal belang. De conventionele methoden hiervoor, die voornamelijk
ontwikkeld zijn in het domein van medische en hardware-diagnostiek, presteren
slecht bij schaalvergroting van onze casus. We beschrijven een aantal optimal-
isaties waardoor de inferentie-tijd sublineair afhankelijk wordt van het aantal
onderscheiden locaties en het aantal sensoren, en lineair van de tijdsresolutie.

Belangrijker dan deze optimalisaties zelf is de manier waarop we ertoe komen,
namelijk via een eenvoudig relationele-algebraraamwerk dat we definiëren voor
inferentie-queries. Hierdoor kan de query geanalyseerd en geoptimaliseerd wor-
den d.m.v. inzichten en technieken uit de databasegemeenschap, bijvoorbeeld
met kostenmetrieken die op cardinaliteit gebaseerd zijn i.p.v. zoals gebruikelijk op
dimensionaliteit.

136 Samenvatting

Een enigszins losstaande onderzoeksvraag behandelt de mogelijkheid om
transitiestatistieken (benodigd voor de parameters van een probabilistisch model)
lokaal in clusters te verzamelen, waarvoor geldt dat transities tussen verschillende
clusters niet precies geobserveerd kunnen worden. We laten zien dat dit vraagstuk
beschreven kan worden door een ingeperkt stelsel van lineaire vergelijkingen en
geven hiervoor een gespecialiseerde oplossingsmethode.

He says, says Alan, that if you stand outside probabilistic discourse
then probability statements make no sense. That is a fair enough statement

as far as it goes. But what he forgets is that in a probabilistic universe there is
nowhere to stand outside probability. It is all of a piece with his idea that

numbers stand for something outside themselves, though he can’t say what.
The fact is, numbers are just numbers. They don’t stand for anything.

They are nuts and bolts, the nuts and bolts of mathematics. They are what we
utilize when we work with mathematics in the real world. Look around you.

Look at bridges. Look at traffic flows. Look at the movement of money.
Numbers work. Mathematics works. Probabilities work.

That is all we need to know.

J.M. Coetzee, Diary of a Bad Year

	Preface
	Acknowledgements
	Introduction
	New requirements for data management
	The case for probabilities
	Research questions
	Research approach and thesis structure
	Related work

	Modeling sensor data using a Bayesian Network
	Theoretical foundations of probability
	Probability spaces and random variables
	Implicit probability spaces
	Conditional probabilities
	Conditional independence
	Notational shorthands

	Defining a model using a Bayesian network
	Formal definition
	Graphical properties

	Probabilistic models for sensor data
	Naive Bayes classifiers for sensor data
	Formal modularity of Bayesian networks
	Dynamic Bayesian networks

	Concrete models
	Hidden Markov Model
	Multi-sensor HMM
	Localization setup

	Common inference queries
	Evaluation and learning of sensor data processing

	Complex models
	MSHMM-AO
	Deterministic functions in a Bayesian network
	The Noisy-OR distribution
	MSHMM-NOR
	Complex queries as part of the Bayesian network

	Local collection of transition frequencies
	Illustration
	Traces, counts, frequencies and probabilities
	Solving a flow with known vertex values
	Problem definition
	Solution
	Inequalities

	Experiment
	Results

	Conclusions and future work

	Probabilistic inference in a relational representation
	The inference expression for Bayesian networks
	Relational expressions for inference
	Relational algebra
	Operators for the inference expression
	Operational semantics

	Rewriting the inference expression
	Sum-factor diagrams
	Sum-factor diagrams for right-deep expressions
	Extended sum-factor diagrams for bushy expressions

	Conventional inference procedures
	Variable elimination
	Junction tree propagation
	Junction tree propagation for multiple queries
	Acyclic hypergraphs

	Relational inference for sensor models
	Exploiting dynamic Bayesian network structure
	Repeating structure in the inference expression
	Sharing subexpressions

	Sparseness
	Sparse representation
	Exploitation of sparseness in MSHMM

	Two techniques for Noisy-OR
	The problematic relation
	Sequential decomposition
	The Díez-Galán Noisy-MAX decomposition

	Analysis of MSHMM-NOR inference

	Conclusions and future work
	Main results
	Future directions
	Integration with streaming management

	Bibliography
	SIKS Dissertation Series
	Summary
	Samenvatting

